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The potential induction of inflammatory cytokines and interferon
responses by small-interfering RNAs (siRNAs) represents a major obstacle
for their use as inhibitors of gene expression. Therapeutic applications of
siRNAs will require a better understanding of the mechanisms that trigger
such unwanted effects, especially in freshly isolated human cells.
Surprisingly, the induction of tumor necrosis factor (TNF-a) and
interleukin-6 (IL-6) in adherent peripheral blood mononuclear cells
(PBMC) was not restricted to double-stranded siRNAs, because induction
was also obtained with single-stranded siRNAs (sense or antisense
strands). The immunostimulatory effects were sequence-dependent, since
only certain sequences are prone to induce inflammatory responses while
other not. The induction of TNF-a, IL-6 and interferon a (IFN-a) was
chloroquine sensitive and dependent more likely on endosomal Toll-like
receptor signaling. Indeed, no significant immunostimulatory effects were
detected when either double or single-stranded siRNAs were delivered
directly to cytoplasm via electroporation. Both RNA types activated a
NF-kB promoter-driven luciferase gene in transiently transfected human
adherent PBMC. Moreover, culture of immature dendritic cells with either
double or single-stranded siRNAs stimulated interleukin-12 production
and induced the expression of CD83, an activation marker. Interestingly,
several double-stranded siRNAs did not induced TNF-a, IL-6 and IFN-a
production, however, their single-stranded sense or antisense did. Taken
together, the present data indicate for the first time that the induction
inflammatory cytokines and IFN-a responses by either double-stranded or
single-stranded siRNAs in adherent PBMC is sequence-dependent and
requires endosomal intracellular signaling. The finding that endosomal
localization of self-RNAs (sense strands) can trigger Toll-like receptor
signaling in adherent human PBMC is intriguing because it indicates that
endosomal self-RNAs can display a molecular pattern capable for
activating innate immunity.

q 2005 Elsevier Ltd. All rights reserved.
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conserved post-transcriptional gene-silencing pro-
cess, resulting in specific mRNA degradation in
several organisms.1,2 In this process, long double-
stranded (ds) RNAs were processed by the RNase
III-like enzyme Dicer to 21–25 nucleotides small-
interfering RNAs (siRNAs), which are then incor-
porated into a protein complex, the RNA-induced
silencing complex (RISC). Thereafter, the RISC is
remodulated into its active form, which contains the
proteins necessary for cleaving the target mRNA at
the site, where the guide antisense siRNA strand
binds.2 RNAi and the related phenomenon of
d.
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quelling and post-transcriptional gene silencing
(PTGS) have been shown to exist in fungus
(Neurospora), plants (Arabidopsis), invertebrates
(Drosophila and C. elegans) and embryonic mouse
and human cells.2,3 Notably, the cellular role of
RNAi is to maintain the integrity of the genome, to
defend cells against viral infection, and to regulate
the expression of cellular genes.

In general RNAi was difficult to detect in somatic
mammalian cells, since dsRNA structures greater
than 30 bp stimulate the IFN pathway, which
represents a host response to viral infection where
several genes are activated.4 Much of the interferon
responses are caused by the activation of the
dsRNA-dependent protein kinase R (PKR). The
antiviral effect of PKR is in part mediated through
the phosphorylation of the alpha subunit of the
eukaryotic translation initiation factor eIF2a, which
results in the sequestration of the recycling factor
eIF-2b in an inactive complex together with eIF2a-
GDP.5 The net effect is global inhibition of protein
synthesis. However, it has recently been shown that
synthetic 21 nt siRNAs, the effector in RNAi,
transfected into human somatic cells can effectively
bypass activation of the interferon pathway.6 Since
then siRNAs have become a powerful tool for
genetic analysis and might serve as a potent
therapeutic tool for gene silencing.7,8 In addition
to mRNA cleavage, siRNAs can induce chromatin
modification in different organisms. Interestingly, a
recent report specified a function for siRNAs in
UNCORRECT

Table 1. Sequences of the siRNAs used in this study

SiRNAs Sequence (5 0–3 0) (sense strand)

1 GGCCUUCCUACCUUCAGACTT
2 GAUCAUCUUCUCAAAAUUCTT
3 GUUCACCUGAGCCUAAUAGTT
4 CUGAUGACCAGCAACUUGATT
5 GACAACCAACUAGUGGUGCTT
9 GAGGCUGAGACAUAGGCACTT
7 GAACUGAUGACAGGGAGGCTT
8 GAAGAAGUCGUGCUGCCUUTT
9 GGUGACAAGAACAUCUCCATT
10 GACCUCAUGUACCACAUUCTT
11 GCCAUUGCACUGUGAAUACTT
12 GUGAUCAUUCAGAGCCAGCTT
13 GGCAUCUGGCUUAAGGUGATT
14 GACCCUCGAGUCAACAGAGTT
15 GCAUGCCUUGGAAUUCCUUTT
16 GGCCGAUUGAUCUCAGCGCTT
17 GGCCAAAUUUACAUUCUCCTT
18 CCAACUAUGACCAGGAUAATT
19 GUAGAUCAAUACCCUACACTT
20 GGAGCGCACCAUCUUCUUCTT
21 GACUUGAGCGAGCGCUUUUTT
22 GAGAUGAUACCACCUGAAATT
23 GCAGAUCUGCGUCGGCCAGTT
24 GGUUCCAUCGAAUCCUGCATT
25 GAGGCAAUCACCAAUAGCATT
26 GAAGAUUUGCGCAGUGGACTT
27 GUCCGGGCAGGUCUACUUUTT
28 GGCAUGGAUCUCAAAGACATT
29 CCAACGGCAUGGAUCUCAATT
30 UGCCCUUCUACAACCAGGATT
31 GCUGGAGUACAACUACAACTT
32 GCUGGAGAUCCUGAAGAACTT
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DNAmethylation in mammalian cells.9 Contrary to
what was thought; recent experiments indicate that
exogenously delivered siRNAs can activate the
interferon pathway.10–15 However, there are con-
flicting reports regarding the extent of off-target
effects and interferon induction by siRNA in
mammalian cells. For example, Rossi and col-
leagues noted that none of the three tested
chemically made siRNAs induced interferon
responses in human cells.16 These differences
could be due to several factors, including differ-
ences in the cell types, reagent preparations and
siRNA sequences. Notably, in all studies only a few
siRNAs were tested using the same experimental
conditions. To further address the question of what
determines siRNA stimulatory function, a compre-
hensive analysis of 32 siRNAs targeting different
genes was performed. The results indicate that the
stimulating capacities of either double-stranded,
single-stranded sense or antisense siRNAs are
sequence dependent and require endosomal com-
partments for intracellular signaling.
FResults and Discussion
OOThe non-specific effects of siRNAs are
sequence-dependent

siRNA were initially thought to be small enough
to avoid double-stranded RNA responses.6
ED P
R

Target gene

Mouse TNF-a
Mouse TNF-a
Human HIF-1
Human HIF-1
Mouse TNF-a
Mouse TNF-a
Scrambled siRNA
Scrambled siRNA
Human neuropilin-1
Human PKC-a
Mouse Csf-1
Mouse Csf-1 receptor
Mouse Csf-1 receptor
Mouse Csf-1
Scrambled siRNA
Human TNF-a
Rat NG-2
Human MMP-9
Rat NG-2
GFP
Human C20orf55
Human CSPP
Human Frizzled-2
Human Wnt-1
Mouse Basigin
Human CSPP
Mouse TNF-a
Mouse TNF-a
Mouse TNF-a
Human AKT-1
GFP
Human cDNA FLJ34902
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However, recent studies indicated that they could
induce interferons and cytokine responses.10–15

Although the reported data provide a note of
caution, the activation of the non-specific pathways
by siRNAs is not well understood. We have
previously examined the response of BALB/c
mice to systemic delivery of siRNAs and found
induction of TNF-a and IL-6 by larger RNAs and
LPS, but not with a chemically synthesized
siRNA.15 whilst the same siRNA preparation
induced inflammatory cytokine responses in
UNCORRECT
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adherent PBMC in vitro.15 To assess whether the
siRNA non-specific effects are sequence-dependent
and to uncover themolecular mechanisms bywhich
siRNA activate innate immuniy genes, the induc-
tion of TNF-a and IL-6 secretion by 32 different
siRNAs was examined in adherent PBMC, an
enriched monocyte population. Freshly isolated
cells were treated with the various siRNA
sequences (see Table 1) for 18 hours. Specific
ELISA on culture supernatants revealed that
around 50% of the tested siRNAs induced the
ED P
ROOF

Figure 1. Effects of siRNAs upon
TNF-a and IL-6 production in
adherent PBMC. Cells were trans-
fected with the indicated siRNAs
molecules (100 nM) for 18 hours
and then TNF-a (a) and IL-6
(b) were measured in the super-
natants by ELISA. Results are
shown as means of five indepen-
dent experiments GSD. The
sequences of the used siRNAs are
shown in Table 1. (c) Immunosti-
mulatory siRNA induce TNF-a
production in a dose dependent
manner. Adherent PBMC were
transfected with various concen-
trations (5–200 nM) of either
siRNA 27 for 18 hours. Subse-
quently, TNF-a was measured in
the supernatants by ELISA. All
results represent the mean of four
or more independent experiments.
D, cells were incubated with only
DOTAP and transfection buffer.
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Figure 2. Characterization of
siRNA effects. (a) siRNA induced
TNF-a production required lipo-
somal delivery of siRNAs. Adher-
ent PBMC were incubated for 18
hours with either siRNA liposome
complexes or naked siRNA 27
(100 nM) in X-VIVO 15 medium,
a nuclease free medium. Subse-
quently, TNF-a was measured in
the supernatants by ELISA.
Results are shown as means of
four independent experiments
GSD. (b) Inhibition of PKR.
Adherent PBMC were pretreated,
or not, with 2-aminopurine
(10 mM) for one hour prior incu-
bation with either siRNA 27 or 32
(100 nM) for 18 hours. Subse-
quently, TNF-a was measured in
the supernatants by ELISA.
Results are shown as means of
four independent experiments

GSD. (c) siRNA induced TNF-a production in blood monocytes. Purified CD14-positive cells were incubated with
either siRNA 27 or 32 (100 nM) for 18 hours, and then TNF-awas measured in the supernatants using ELISA. All results
represent the mean of four or more independent experiments
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UNCORREC

production of TNF-a(Figure 1(a)). Adherent PBMC
produced also IL-6 upon stimulation with siRNAs
complexed to DOTAP (Figure 1(b)). The profile of
IL-6 production is comparable to that of TNF-a.
Notably, siRNAs varied dramatically in their ability
to induce TNF-a and IL-6 production, suggesting
that their activities are sequence-dependent. Only
six of the siRNAs examined exhibited a strong
immunostimulatory effect, with siRNA-27 being the
most effective under our experimental conditions.

To determine the immunostimulatory capacity of
siRNAs, cells were transfected with siRNA 27 at a
range of concentrations (5–200 nM). After 18 hours
in culture, secreted TNF-a was assessed by ELISA
(Figure 1(c)). As shown, siRNA 27 stimulated
TNF-a production even at low concentrations.
Taken together these data indicate that siRNAs
can activate the expression of inflammatory cyto-
kines, but their affinity and specificity for a potential
cellular target are more likely to be influenced by
the siRNA base composition. Sequence alignment
of the siRNA sequences revealed no significant
homology between the immunostimulatory siR-
NAs, suggesting the involvement of RNA tertiary
structures and/or specific dinucleotides.

Intracellular siRNA delivery is required for
cytokine induction

Having found that the non-specific effects of
siRNAs are sequence-dependent, I have next
investigated whether intracellular siRNA delivery
was required. Therefore siRNAs were added
directly to the culture medium without complexing
them to DOTAP. siRNA 27 activated adherent
PMBC to secrete TNF-a when complexed to
DOTAP. In contrast, free siRNA did not lead to
YJMBI 57125—21/3/2005—17:11—SFORSTER—141115—XML – pp. 1–12/A
ED P
ROOsignificant cytokine production (Figure 2(a)).

A nuclease resistant siRNA 27 gave similar results
as its unmodified version (data not shown). These
results argue that siRNAs target mainly intra-
cellular compounds. In this respect, a role for PKR
in the activation of interferons by siRNAs was
recently suggested.12

To explore the involvement of the dsRNA
recognition protein PKR in this process, the specific
inhibitor of PKR, 2-aminopurine, was used. Cells
were pretreated with 2-aminopurine (10 mM), a
normally used concentration, and subsequently
treated with siRNA liposome complexes. Pretreat-
ment with 2-aminopurine reduced, but did not
abolish cytokine production by siRNAs (Figure
2(b)). These results would indicate the involvement
of other cellular targets in siRNA intracellular
signaling.

siRNAs activate TNF-a production in purified
human monocytes

Monocytes are essential effector cells in chronic
inflammatory disorders and infectious diseases. To
perform their function, monocytes need to be
activated, either via inflammatory cytokines pro-
duced by the adaptive immune system or via direct
stimulation with microbial products. Although a
high proportion of the adherent PBMC are mono-
cytes, the capacity of siRNAs to activate TNF-a
production in purified blood monocytes was
investigated. In these experiments, CD14-positive
cell populations were prepared from PBMC by
positive selection with immunomagnetic beads
coated with anti-CD14 monoclonal antibodies
(Dynal, Oslo, Norway), and the cells were subse-
quently incubated with siRNAs (Figure 2(c)). There
PPS
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Figure 3. Expression of TLR3 by human monocytes and iDC. (a) Flow cytometry analysis. Freshly isolated monocytes
and iDC, monocytes cultured for six days in the presence of GM-CSF and IL-4, were stained either with FITC-labeled
anti-TLR3 monoclonal antibody (eBioscience) or control mouse IgG1. After washing, cells were analyzed by flow
cytometry. The mean fluorescence of stained cells is shown in the upper-right corner of the individual dot plots. (b) RT-
PCR for TLR3 and actin mRNAwas performedwith monocytes and iDC as described in Experimental Procedures. TLR3
was not detected in human monocytes.
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COwas a significant induction of TNF-a production
with the immunostimulatory siRNA 27, whereas no
significant activity was seen with the control siRNA
32.
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UNTLR3 is not required for responsiveness to
either double-stranded or single-stranded
siRNAs in adherent PBMC

Notably, the host sensors that initially detect viral
and bacterial antigens and trigger cytokine pro-
duction has been investigated by several groups,
YJMBI 57125—21/3/2005—17:11—SFORSTER—141115—XML – pp. 1–12/APP
some of which have indicated the involvement of
Toll-like receptors (TLRs). These receptors, which
are mammalian homologous of the Drosophila Toll,
recognize specific structural motifs expressed by
microbes.17–19 So far, ten TLRs have been described
in humans, and ligands have been defined for nine
of them. TLR1, K2 and K6 are triggered by
peptidoglycan and other microbial products, TLR3
by dsRNA, TLR4 by LPS, TLR5 by flagellin, TLR7
and K8 by imidazoquinolines, and TRL9 by
unmethylated CpG DNA motifs. Although TLR3
is a receptor for dsRNA and cellular mRNA,20,21 it
S
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does not contain dsRNA binding motifs. While this
work is underway, a recent study has indicated the
involvement of TLR3 in siRNA signaling and
suggested the involvement of dsRNA-binding
protein that has yet to be identified.14 In contrast
to macrophages and dendritic cells, however,
human monocytes do not express TLR3 as assessed
by flow cytometry and RT-PCR (Figure 3(a) and (b)).
These results agree with those of a recent study
reporting on the expression of TLR3 by human
monocytes.22 In addition, treatment of either adher-
ent PBMC or purified monocytes with anti-TLR3
monoclonal antibody, known to blocks TLR3
signaling,23 did not inhibit the production of TNF-
a by immunostimulatory siRNAs (data not shown).
709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726
Sense and antisense siRNA strands are highly
stimulatory when compared to their double-
stranded siRNA counterparts

The data described above indicate that a sub-
group of double-stranded siRNAs can induce the
production of inflammatory cytokines. During this
study, however, I have been surprised by the
finding that both single-stranded sense and anti-
sense siRNAs can trigger the production of pro-
inflammatory cytokines (e.g. TNF-a) and
interferons (IFN-a) in adherent PBMC (Figure 4 as
a representative example). This is in contrast to
what have been reported using various cancer cell
lines.12,13 As for the double-stranded siRNAs, the
induction of TNF-a by single-stranded siRNAs was
sequence dependent. In the case of siRNA 27, the
UNCORRECT

After 18 hours transfection time, TNF-awas measured in the
stranded and single-strand siRNAs. The test molecules (100 n
electroporation. To test the involvement of endosomes in siRN
two hours with chloroquine prior to transfection with DOTAP
supernatants by ELISA. All results represent the mean of thr
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sense strand exhibited the strongest effects, whereas
in the case of siRNA 32 the antisense strand exerted
the strongest effect on TNF-a production (Figure
4(a)). Notably, the single-stranded siRNAs were
highly immunostimulatory compared to their
double-stranded siRNA counterparts (e.g. siRNA
32). As shown DOTAP alone did not induce either
TNF-a or IFN-a production, indicating that the
effects are related to the RNA sequences. Direct
addition of either naked double-stranded siRNAs
or single-stranded siRNAs did not affect cytokine
production (data not shown). Moreover, several
double-stranded siRNAs did not induce response,
whereas their corresponding single-stranded sense
or antisense strands did (Figure 4(a), as an
illustration). It is worth noting that the same
single-stranded siRNA preparations were used to
prepare the annealed siRNAs. Taken together, these
observations would indicate that the reported
siRNA effects in adherent PBMC are related to the
siRNA sequences and ague against any possible
contamination with endotoxins.
ROOFCytokine induction by double-stranded siRNAs,
sense or antisense siRNA strands requires
endosomal acidification

Cationic liposome-delivered siRNAs are
expected to enter the cell via endocytosis. Because
several Toll-like receptors, in particular TLR7,
TLR8, TLR9, are localized in the endosomes, I
hypothesized that endocytically introduced RNA
could trigger the activation of these receptors,
ED P
Figure 4. Effects of double-

stranded and single-stranded siR-
NAs upon TNF-a production in
adherent PBMC. (a) Cells were
transfected with either double-
stranded siRNAs (d), sense
siRNA strands (s) or antisense
siRNA strands (a) for 18 hours.
Subsequently, TNF-a was
measured in the supernatants by
ELISA. All test RNA molecules
were used at 100 nM and com-
plexed with DOTAP at 10 mg/ml.
(b) Inhibition of cytokine pro-
duction by chloroquine in dose-
dependent manner. Cells were
pre-incubated with chloroquine
for two hours prior transfection
with siRNAs (100 nM) for 18
hours. Subsequently, TNF-a was
measured in the supernatants by
ELISA. (c) The test RNAmolecules
(100 nM) were delivered to the
cells either via DOTAP or electro-
poration as indicated on the figure.

supernatants by ELISA. (d) Induction of IFN-a by double-
M) were delivered to adherent PBMC via either DOTAP or
A induction of interferons, cells were also pretreated for

. After transfection (20 hours), IFN-awas measured in the
ee or more independent experiments.
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leading MAPK kinases and NF-kB activation. To
test the involvement of endosomes in siRNA
signaling, cells were treated with an inhibitor of
lysosomal acidification, chloroquine for two hours
prior to transfection with either double-stranded
or single-stranded siRNAs. TNF-a secretion by
adherent PBMCwere inhibited in a dose-dependent
manner by chloroquine (Figure 4(b)), indicating that
the acidification of the endosomes is important
for cellular response to either double-stranded or
single-stranded siRNAs. A similar inhibition was
obtained with Bafilomycin, an additional inhibitor
of endosomal acidification (data not shown).

Cationic liposomes such as DOTAP both protect
the siRNA and mediate internalization via endo-
cytosis. After entry, the siRNA must escape the
endolysosomes and enter the RNAi pathway.
The requirement for acidification of endosomes in
adherent PBMC was further examined via electro-
poration of siRNAs into adherent PBMC. In contrast
to DOTAP, the electroporation method open up
pores in the cell, so siRNA molecules can enter the
cell directly into the cytoplasm. As shown in Figure
4(c) and (d), no TNF-a and IFN-a induction was
obtained when either double-stranded or single-
stranded siRNAs were delivered via electropora-
tion. Therefore, endosome compartments are
required for both double-stranded and single-
stranded siRNA intracellular signaling and
subsequent cytokines and interferon production
by adherent PBMC. Notably, pretreatment of PBMC
with chloroquine prior to transfection with siRNA
abrogated IFN-a production (Figure 4(d)), indicat-
ing for the first time the involvement of endosomes
in siRNA induction of interferons.
UNCORRECT
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Endosomal siRNA signaling supports the
involvement of the Toll-like receptor 8

Toll-like receptors (TLRs) represent a class of
pattern recognition receptors (PPRs) that detect
microbes or their components.19 TLRs are pre-
dominantly expressed on the cell surface; however,
a subset (TLR7, TLR8, TLR9, and in some cases,
TLR3) is retained in intracellular compartments.
Notably, TLR9, TLR7 and TLR8 require endosomal
acidification for signaling.19 Because the induction
of inflammatory cytokines by siRNAs is chloro-
quine-sensitive, the data would support the invol-
vement of these receptors in siRNA intracellular
signaling. The recent identification of single-
stranded RNAs as a ligand for human TLR824,25

would support our initial observation15 and the
present elaborated results suggesting the involve-
ment of endosomal TLRs in single-stranded siRNA
signaling. This novel observation invites the ques-
tion of what serves as the endosomal receptors for
double-stranded siRNAs. In acidic microenviron-
ment such as the endosomes, double-stranded
siRNA might dissociate and generate single-
stranded siRNAs for intracellular signaling. In
support of this idea is the observation that certain
double-stranded siRNAs are very less effective in
inducing inflammatory cytokine production than
their corresponding single-stranded sense or anti-
sense strand counterparts (Figure 4). Depending of
the relative internal stability, certain siRNA
duplexes may exist in equilibrium with their single
strand forms, which can activate TRL8 and/or other
endosomal TLRs (Figure 5). Alternatively, double-
stranded siRNAs may signal through endosomal
TLR3, known to bind double-stranded RNAs.21
ED

Figure 5. A schematic diagram
illustrating the intracellular siRNA
signaling. A complex of either
double-strand or single-strand siR-
NAs or cationic lipids bind to the
plasma membrane electrostatically
and are internalized via endocyto-
sis. Within the endosomes RNA
molecules can bind to endosomal
Toll-like receptors, in particular
TLR8 and 7, which can activate
the transcription factor NF-kB,
leading to inflammatory cytokine
production. TLR7, 8 and 9 use
MyD88 as primary adaptor to
activate interferon production via
undefined signaling intermediates.
TLR3 uses the adaptor protein
TRIF to activate interferon regulat-
ory factor-3 (IRF-3). The activation
of Toll receptors may activate PKR
directly.19,11
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Figure 6. Immunostimulatory siRNAs activate the
NF-kB transcription factor. A NF-kB-dependent luciferase
reporter gene was co-transfected in human adherent
PBMC with a control plasmid containing the Renilla
luciferase gene under the control of the CMV promoter
for 24 hours. Subsequently; cells were treated with either
siRNA 27 or 32. The sense (S) and the antisense strand (A)
of siRNA 27 and 32, respectively, were also tested.
Eighteen hours later, luciferase activity was determined
using Dual-Luciferase Reporter Assay System (Promega).
The data show the relative firefly luciferase activity
normalized to that of Renilla luciferase. Results are
shown as means of three independent experiments GSD.
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Given that single-stranded siRNA are highly
immunostimulatory compared to their correspond-
ing double-stranded siRNAs, during siRNA
annealing it is important to make sure that all
siRNA molecules exist as siRNA duplexes.
Although all double-stranded siRNA preparations
used in this study were checked by PAGE for the
presence of unannealed single-stranded siRNAs,
some of the double-stranded siRNA effects could
originate from tiny traces of free single-stranded
siRNAs. Whatever the nature of double-stranded
siRNA receptors; however, the present data indicate
for the first time that induction of inflammatory
cytokines and interferon-a by either double-
stranded or single-stranded siRNAs requires endo-
somal acidification in fleshly isolated PBMC. There-
fore, the development of carriers that deliver siRNA
directly into the cytoplasm should overcome the
problem of inflammatory cytokine induction by
chemically synthesized siRNA, a major obstacle for
systemic administration of siRNA in patients.
Similarly to siRNA liposome complexes, naked
siRNAs delivered via other techniques in vitro and
in vivo are more likely to be taken up by cells via
endocytosis.

The finding that several siRNA sense strands
(mRNA sequences) can be highly immunostimula-
tory indicates that endosomal Toll-like receptors
can recognize self-RNA. Thus, how can the immune
system distinguish between self and non-self RNAs
(e.g. viral RNAs,) and how to mount and amplify an
immune response against invading RNA in a
specific manner? The present data argue that the
immune system uses the endosomes or lysosomal
compartments as molecular recognition signature
for RNA in general (whether self or non-self).
In contrast to viral RNAs, self-RNAs exist in the
cytoplasm and therefore cannot enter the endoso-
mal compartments; hence in normal situation the
immune system cannot be activated by self-RNAs.
Similar to single-stranded siRNAs, liposomal
delivery of short single-stranded RNA (21 nt)
derived from HIV-1 TAT mRNA or human TNF-a
mRNA also induced TNF-a and IFN-a production
in adherent PBMC (data not shown). Thus, endo-
somal location of RNA seems to function as a
“danger signal” for TLR recognition, and sub-
sequent activation of innate immunity genes. The
observation that certain sequences are more stimu-
latory than others would indicate that endosomal
TLRs, in particular TLR8, have preferences for a
particular nucleotides and/or structures that need
further investigation.
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UNCsiRNA treatment can activate the NF-kB
promoter

The core TLR signaling pathway uses myeloid
differentiation factor 88 (MyD88) as the primary
adaptor protein and results in NF-kB activation,
cytokine production and expression of costimula-
tory molecules, such as the class II major histocom-
patibility complex. To address the involvement of
YJMBI 57125—21/3/2005—17:12—SFORSTER—141115—XML – pp. 1–12/A
ED PNF-kB, promoter activation studies using firefly
luciferase as a reporter gene was performed.
Adherent PBMC were transiently transfected with
NF-kB-luciferase gene along with plasmid DNA
with the Renilla luciferase gene for 24 hours.
Subsequently, the cells were either mock transfected
or transfected with a stimulatory siRNA, and 18
hours later, cells were harvested, and equal
amounts of cell extracts were subjected to luciferase
assay (Figure 6). The data showed that double-
stranded siRNA 27 could induce around 8-fold
increase in NF-kB activity, whereas 22-fold increase
were obtained with the single-stranded siRNA
(S27), again identifying single-stranded siRNAs as
an important inducer of NF-kB activation.
Single-stranded and double-stranded siRNAs
stimulate monocyte-derived immature dendritic
cells to produce cytokines and up-regulate
costimulatory molecules

If we view the induction of inflammatory
cytokines as a beneficial mediator in cancer and
infectious diseases, then stimulatory siRNAs could
emerge as a viable agent to knockdown specific
genes and activate innate and acquired immunity
against tumor cells. Notably, stimulation of imma-
ture dendritic cells (iDC) by microbial products
induces the production of inflammatory cytokines
PPS
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Figure 7. Immature DC activated
with siRNA upregulated the
expression of CD83 and secreted
IL-12. Immature dendritic cells
were culture for 48 hours in the
presence of either siRNA 27 or 32
(100 nM) and then stained with
FITC-labeled monoclonal anti-
bodies specific for CD83 (a). Cells
were also stained with the corre-
sponding isotype control. The
mean fluorescence of stained cells
is shown in the upper-right corner
of the individual dot plots. Results
are shown as means of three
independent experiments GSD.

(b) After 48 hours stimulation with siRNAs, IL-12 was measured in the supernatants using ELISA. Results are shown
as means of three independent experiments GSD.
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such as TNF-a and IL-12, which can induce
differentiation of T cells into a T helper cell type
1.26 In addition, these stimuli are known to up-
regulate certain costimulatory molecules such as
CD40, CD80, CD83 and CD86. This process
underlies DC maturation, and it strongly poten-
tiates the ability of DC to activate naive T cells.26,27

Therefore, the effects of siRNAs upon the matu-
ration of DC were investigated. To generate iDCs,
freshly isolated monocytes were cultured for six
days in the presence of GM-CSF (50 ng/ml) and
IL-4 (100 ng/ml). Subsequently, they were both
transfected with siRNA 27 or siRNA 32 and then
analyzed by flow cytometry (Figure 7(a)). Adding
stimulatory siRNA 27 to the culture medium
upregulated the expression of CD83, whereas no
significant effects were obtained with the control
siRNA 32. Treatment with siRNA 27 also upregu-
lated the expression of CD86 (data not shown).
Furthermore, siRNA 27-treatment resulted in IL-12
production (Figure 7(b)). Similar results were
obtained with single-stranded siRNA 27. These
results suggest that stimulatory siRNAs can
enhance immunity by inducing cytokine pro-
duction and DC maturation. Thus, the use of
stimulatory double-stranded or single-stranded
siRNAs as a new generation of adjuvants may
facilitate the design of effective vaccines.

The ability to enhance or augment the innate
immune response clearly represents a potential
powerful way to prevent or treat infections as well
as a way to develop cancer vaccines. Recently, it has
been discovered that unmethylated CpG dinucleo-
tides in particular base contexts are recognized by
the immune system as danger signals.28 In animal
models, deoxyoligonucleotides with stimulatory
CpG motifs have been shown to be of therapeutic
value as adjuvants for conventional and therapeutic
vaccines against infectious diseases and tumors.29

As shown in the present study, the stimulatory
RNAs, in particular single-stranded siRNAs, acti-
vated human monocytes and dendritic cells to
produce TNF-a and IL-12, two key cytokines in
immune regulation. In addition, the induction of
YJMBI 57125—21/3/2005—17:12—SFORSTER—141115—XML – pp. 1–12/APP
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other cytokines such as IL-6 and interferons is an
essential response for the clearance of viral infec-
tions.30 Natural killer cells are activated by cyto-
kines and chemokines, including type I IFN and
IL-12, which are secreted by dendritic cells.31

Therefore, treatment of cancer and infectious dis-
eases might benefit from the induction of cytokine
and dendritic cell activation by immunostimulatory
siRNAs. TLR activators are already used as
adjutants to boost immune responses in vaccines.
However, the success of a given vaccine may
depend on appropriate activation of TLR. There-
fore, single-stranded sense RNA-27 should be
explored as an adjuvant for vaccination and
immunotherapy. On the other hand, the develop-
ment of TLR antagonist holds promise as a new
class of anti-inflammatory agents. Although further
study is required, some of the non-stimulatory
RNAs may function as antagonists.
E
Selection of siRNA against human TNF-a

One of the key cytokines crucial to many
biological processes is TNF-a. Low levels of TNF-
a produced by monocytes and tissue macrophages
under physiological conditions are expected to be
involved in maintaining cellular and tissue homeo-
static. The production of TNF-a increases in
response to microbial infection and tissue injury.
Because of its important role in the pathogenesis of
a variety of inflammatory and immune diseases,
TNF-a has been identified as a key target for
pharmacological modulation.32 Therefore, the
development of agents that specifically inhibit
TNF-a may provide clinician with a valuable
alternative to traditional disease-modifying anti-
inflammatory drugs. In this respect, we have shown
that siRNA-targeting mouse TNF-a can delay the
onset of LPS-induced sepsis.33 Out of 12 recently
tested siRNA targeting mouse TNF-a, siRNA 29
(see Table 1), exhibited the greatest protective effect.
To select, siRNAs against human TNF-a, several

siRNAs were designed (Table 2) and tested for their
inhibitory effect on siRNA 27-induced TNF-a
S



Table 2. Sequences of siRNAs targeting human TNF-a

SiRNAs Sequence (5 0–3 0) (Sense strand)

H1 GAGUGACAAGCCUGUAGCCTT
H2 CUCAGCGCUGAGAUCAAUCTT
H3 CUAGUGGUGCCAGCCGAUGTT
H4 GCGUGGAGCUGAGAGAUAATT
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production in adherent PBMC (Figure 8(a)). Some
siRNAs were effective in inhibiting TNF-a pro-
duction, whereas others had no effects, thus
suggesting the specificity of the inhibitory effects.
When tested alone, the siRNA inhibitors signifi-
cantly reduced LPS-induced TNF-a production by
adherent human PBMC (Figure 8(b)). The utility of
this selection assay may be extended to other
inflammatory cytokines and type I interferon to
select effective siRNAs in human blood cells. It is
worth noting that the immunostimulatory effects of
siRNAs are more pronounced in human PBMC as
compared to other human cell lines. This may
depend on the expression level of Toll-like recep-
tors, which is under investigation.

Collectively, the present study underscores for
the first time the importance of the endosome
compartments in siRNA intracellular signaling in
adherent PBMC. The results can easily be explained
by the interaction of RNA molecules with endo-
somal Toll-like receptors and subsequent induction
of inflammatory and interferon responses (see
Figure 5). The finding that endosomal localization
of self RNA can trigger Toll-like receptors signaling
in adherent PBMC is intriguing because it indicates
UNCORRECT

Figure 8. Selection of siRNAs against human TNF-a.
(a) Inhibitory effects of TNF-a siRNAs on TNF-a
production by the immunostimulatory siRNA 27. Adher-
ent PBMC cells were co transfected with siRNA 27 and
various siRNA targeting the human TNF-a (H1-5).
Eighteen hours later supernatants were analyzed for
TNF-a contents by ELISA. Results are shown as means of
three independent experiments GSD. (b) Blockage of
LPS-induced TNF-a expression by the inhibitory siRNAs.
The cells were transfected for 18 hours with either siRNA
32, H2, H3 or H4 (50 nM). Subsequently, cells were
stimulated with LPS (20 ng/ml) for eight hours and then
supernatants were analyzed for TNF-a contents by
ELISA. Results are shown as means of three independent
experiments GSD.

YJMBI 57125—21/3/2005—17:12—SFORSTER—141115—XML – pp. 1–12/A
that endosomal self RNA can display a molecular
pattern capable for triggering innate immunity
activation.
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Experimental Procedures

siRNAs

The siRNAs used in this study correspond to various
molecules targeting genes related to other ongoing
projects. All siRNAs were chemically synthesized by
Eurogentec (Seraing, Belgium), dissolved in water and
annealed in the transfection buffer (20 mM Hepes,
150 mM NaCl, pH 7.4) at 20 mM. Analysis of LPS/endo-
toxin levels in siRNA stocks was found to be less than
0.01 EU/ml (PyrogentR, CAMBREX). The sequences
of the sense strands and the target genes are shown in
Table 1.

Preparation of human cells

Human mononuclear cells were prepared from buffy
coats by density gradient centrifugation (Lymphoprep,
Nycomed Pharm, Oslo), washed, and then resuspended
in RPMI 1640 containing 10% heated inactivated fetal calf
serum (FCS). Enriched monocyte populations were
isolated by plastic adherence. After three hours incu-
bation at 37 8C, non-adherent cells were removed by
repeated gentle washing with warm medium. More than
75% of the obtained cells by this technique are CD14C
cells. In addition, CD14C cell population was prepared
from PBMC by positive selection with immunomagnetic
beads coated with anti-CD14 monoclonal antibodies
(Dynal, Oslo, Norway).

Culture of dendritic cells

Enriched population of CD14 positive monocytes were
isolated from human PBMC as described above and
cultured for five days in RPMI 1640 supplemented with
10% FCS and antibiotics, in the presence of 50 ng/ml GM-
CSF and 100 ng/ml IL-4 to obtain monocyte- derived
immature dendritic cells (iDC). After five days in culture,
the cells were either mock transfected or transfected with
either siRNA 27 or 32 for 48 hours, and then cells were
stained with FITC-conjugated monoclonal antibodies
specific for CD83 (Immunotech). Cells were also stained
with FITC-conjugated normal mouse IgG1, an isotype
control.

FACS staining and analysis

Briefly, 2!105 cells were incubated in the recom-
mended FITC-labeled antibody dilutions for 30 minutes
at 4 8C in staining buffer (PBS containing 0.5% FCS and
0.1% azide). Cells were also stained with the correspond-
ing Ab isotype controls. Subsequently, the cells were
washed twice with the staining buffer and then analyzed
on a FACScan using Cell-Quest software (BD Bio-
sciences). Cells were gated in forward/side scatter and
the quadrants were set on the relative isotype controls.

Transfection and ELISA

Cells were seeded at 5!104/well/200 ml in 96-well
plates. After an overnight incubation with siRNAs/lipo-
some complexes, culture supernatants were collected and
PPS
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cytokine contents were assessed by ELISA. Cells were
transfected in RPMI 1640 medium (PAA Laboratories
GmbH) supplemented with 10% heat-inactivated FCS,
2 mM L-glutamine, 100 mg/ml penicillin and 100 mg/ml
streptomycin using DOTAP (10 mg/ml) as described.33

Each assay was carried out in triplicate. When naked
siRNAs were used, cells were incubated in X-VIVO 15
medium without adding FCS (CAMBREX). In the case
of monocytes, 2!104 cells were used per well. The
inactivation of PKR was carried out as follows: Cells were
incubated with 2-aminopurine (10 mM), a specific inhibi-
tor of PKR, for one hour prior to addition of the siRNA/
liposome complexes. After an overnight transfection
with the tested molecules, the levels of TNF-a, IL-6 and
IL-12p70 in the culture supernatants were measured by
available ELISA kits according to the manufacture’s
instructions (R&D Pharmingen). Samples were run in
triplicate. Human IFN-a was measured using ELISA kit
(PBL Biomedical Laboratories).
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Transfection and reporter assays

An enriched monocyte population (2!106 cells) were
seeded onto a 24-well plate and transfected the following
day with firefly luciferase gene (1 mg) under the control of
the NF-kB-promoter and pRL-TK DNA (1 mg, Promega)
encoding the Renilla luciferase gene. After 24 hours, the
cells were transfected with siRNAs and then cells were
harvested 18 hours later. Luciferase activities were
measured using the Dual-Luciferase Reporter Assay
System according to the manufacture’s instructions
(Promega).
T
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RT-PCR analysis

Total RNA was extracted from freshly isolated mono-
cytes and monocytes-derived iDC using total RNA
isolation kit (Pharmacia Biotech). DNAse I-treated RNA
(10 mg) was reverse-transcribed with NotI-d(T)18 primer
using the first-strand cDNA synthesis Kit (Pharmacia
Biotech) according to the manufacturer’s instructions.
Polymerase chain reaction (PCR) was performed on 3 ml
of cDNA in 50 ml of final volume. The TLR3 primers are:
1366

1367
YJM

1368
C5 0-ATTGGGTCTGGGAACATTTCTCTTC-3 0 (forward
primer)
1369
1370

1371

1372

RE5 0-GTGAGATTTAAACATTCCTCTTCGC-3 0 (reverse

primer)

As a control, b actin mRNA was also amplified using
the following primers:
1373

1374
1375
R
5 0-ATCTGGCACCACACCTTCTACAATGAGCTGC
G-3 0 (forward primer)
1376
1377

1378

1379

1380
NCO50-CGTCATACTCCTGCTTGGTGATCCACATCTGC-30

After 35 cycles of amplification (one minute at 92 8C;
one minute at 56 8C; one minute at 72 8C, samples were
analyzed by electrophoresis on 1.5% agarose gel and
visualized by ethidium bromide staining.
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