

Lectures:	
0830 - 0930	Basics of stem cell biology (Joel C. Glover)
0930 - 1030	Tumor stem cells (Stefan Krauss)
1030 - 1130	Stem cell epigenetics (Philippe Collas)
1130 - 1200	Break/Lunch
1200 - 1300	MicroRNAs and stem cell regulation (Jan Oxholm Gordeladze)
1300 - 1400	Current clinical applications of stem cells in Norway (Jan E. Brinchmann)
1400 - 1415	Break
Current stem cell research:	
1415 - 1515	Presentations
1515 - 1530	Break
1530 - 1630	Presentations
1630	Concluding remarks

STEM CELLS - BASIC CONCEPTS

Joel C. Glover Norwegian Center for Stem Cell Research CAST Laboratory of Neural Development and Optical Recording (NDEVOR) Institute of Basic Medical Sciences University of Oslo joel.glover@medisin.uio.no

> http://stemcells.nih.gov/info/basics/ http://www.stemcellresearchfoundation.org http://www.stemcell.no

WHAT IS A STEM CELL?

A cell that can undergo self-renewing (expanding) proliferation and give rise to specialized differentiated cells

3 CONCEPTUAL CATEGORIES

Embryonic

Somatic

Tumor

3 CONCEPTUAL CATEGORIES

Embryonic Found in blastocyst stage embryos, can generate all tissues of the body

Somatic

Tumor

3 CONCEPTUAL CATEGORIES

Embryonic

Found in blastocyst stage embryos, can generate all tissues of the body

Somatic

Found in fully-formed organs, can generate multiple cell types characteristic of organ of origin.

Tumor

3 CONCEPTUAL CATEGORIES

Embryonic

Found in blastocyst stage embryos, can generate all tissues of the body

Somatic

Found in fully-formed organs, can generate multiple cell types characteristic of organ of origin.

Tumor

Found in tumors, can reconstitute new tumors of same type, presumed source of metastases

THE CONCEPT OF STEM CELL POTENCY

Totipotent (entire body)

Pluripotent (most - all cell types)

Multipotent (several cell types) fertilized egg first few blastomeres

embryonic stem cells embryonic germ cells embryonal carcinoma cells

somatic stem cells

3 CONCEPTUAL CATEGORIES

Embryonic

Found in blastocyst stage embryos, can generate all tissues of the body

Somatic

Found in fully-formed organs, can generate multiple cell types characteristic of organ of origin.

Tumor

Found in tumors, can reconstitute new tumors of same type, presumed source of metastases

HISTORICAL PERSPECTIVE

Fertilized egg + first few blastomeres are totipotent Separated blastomere experiments of Driesch 1892

Embryonic stem cells first isolated from mouse blastocysts by Martin and Evans & Kaufman 1981 "inner cell mass" established as expandable cell lines, are pluripotent allowed for the generation of transgenic mice Embryonic stem cells first isolated from human blastocysts by Thomson et al, Gearhart et al 1998

Established as expandable cell lines (first USA, now many countries including Sweden) Requires use of human blastocysts, obtained in connection with *in vitro* fertilization for couples with fertility problems

Embryonic Stem Cell Lines Derived from Human Blastocysts

James A. Thomson,* Joseph Itskovitz-Eldor, Sander S. Shapiro, Michelle A. Waknitz, Jennifer J. Swiergiel, Vivienne S. Marshall, Jeffrey M. Jones

Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and straited muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.

www.sciencemag.org SCIENCE VOL 282 6 NOVEMBER 1998

THE CONCEPT OF STEM CELL POTENCYTotipotent
(entire body)fertilized egg
first few blastomeresPluripotent
(most - all cell types)embryonic stem cells
embryonal carcinoma cellsMultipotent
(several cell types)somatic stem cells

Embryonic stem cells: example of a potential use

Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model

Lars M. Björklund*11, Rosario Sánchez-Pernaute*15, Sangmi Chung*1, Therese Andersson*11, Iris Yin Ching Chen⁵, Kevin St. P. McNaught*1, Anna-Liisa Brownell*5, Bruce G. Jenkins⁵, Claes Wahlestedti, Kwang-Soo Kim*⁵, and Ole Isacoo*1***

Likelik Parlinovi Davase Basch Center of Easthorne, Netorospectrolica Laboratoria, and Palebular Neurobiology Laboratory, Netoria Parlinovi Davase Basch Center of Easthorne, Netorospectrolica Laboratoria, of Realbular Neurobiology Laboratory, Mascholacett General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 20116, and Karolinak Institution, Ser1177 Stochholm, Sweden

Edited by Gerald D. Fischbach, Columbia University College of Physicians and Surnanne. New York: NY: and anonnued Neuember 38: 2081 (received for review August 20, 2001) 2344–2349 | PNAS | February 19, 2002 | Vol. 99 | no. 4

Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells

Stins Frilings¹¹, Elisabet Andersson¹³, Lachlan H. Thompson¹, Marie E. Jönsson¹, Josephine B. Hebiggaard¹, Evanthis Hanou², Zhanna Alekseenko¹, Ulrika Marklund², Susama Skellander, Nikolaos Volakaks¹, Outi Hovatta², Abdeljabbat Elinari², Anders Björklund¹, Thomas Perlamma^{13,4} and Johan Friction^{3,2} ¹⁷The Ludophin Sector and Wartheim Personance of Call and Molecular Biology, "Revocience, and Touciens and Russites, Courties Landowski and Russites, Courtee and Russites, Russite

PNAS

cember 10, 2008) PNAS | May 5, 2009 | vol. 106 | no. 18 | 7613-7618

Embryonic stem cells: example of a potential use

4694 • The Journal of Neuroscience, May 11, 2005 • 25(19):4694 – 4705

Development/Plasticity/Repair

Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Remyelinate and Restore Locomotion after Spinal Cord Injury

Hans S. Keirstead,¹ Gabriel Nistor,¹ Giovanna Bernal,¹ Minodora Totoiu,¹ Frank Cloutier,¹ Kelly Sharp,¹ and Oswald Steward^{1,2,3} Departments of ¹Anatomy and Neurobiology, ²Neurobiology and Behavior, and ³Neurosurgery, Reeve-Irvine Research Center, College of Medicine University of California a trivine, 1 rvine, California 32697–4392

3 CONCEPTUAL CATEGORIES

Embryonic

Found in blastocyst stage embryos, can generate all tissues of the body

Somatic

Found in fully-formed organs, can generate multiple cell types characteristic of organ of origin.

Tumor

Found in tumors, can reconstitute new tumors of same type, presumed source of metastases

HISTORICAL PERSPECTIVE

Previously known to exist in organs with obvious self-renewal (bone marrow, skin, intestinal epithelium), and in organs with some capacity to regenerate after cell loss (liver, muscle)

Previously believed NOT to exist in organs with no obvious self-renewal (like brain)

More recently demonstrated in precisely such organs (like brain)

AN IMPORTANT QUESTION REGARDING SOMATIC STEM CELLS

What is the differentiation potential of somatic stem cells?

Organ-restricted (multipotent), or broader (pluripotent)?

Much circumstantial evidence. Requirement for <u>definitive</u> studies proving full differentiation to specific cell types *in vivo*.

Somatic stem cells: examples of specific uses

Hematopoietic stem cells have been used for years in the treatment of bone marrow and blood disorders such as leukemia, aplastic Anemia

Skin transplants are de facto stem cell treatments

More recent advances in regenerative medicine: Liver, connective tissue, etc..... (homotypic, as for bone marrow transplants)

In the future: Tissues derived from <u>heterotypic</u> stem cell sources? (for example, nerve cells from hematopoietic stem cells or from fat stem cells)

Make pluripotent stem cells!

Induced pluripotent stem cells (iPS cells): Pluripotent stem cells derived from somatic cells that have been reprogrammed to revert to a pluripotent state as in embryonic stem cells

Embryonic Advantages: Clearly pluripotent, easy to expand and differentiate, platform for many model systems for studying normal and disease mechanisms

Disadvantages: Not autologous, may cause tumors, derived from embryos

Somatic Advantages: Autologous, already programmed towards specific cell types, lower risk of tumorigenesis

Disadvantages: Restricted potential, some are hard to get, still carry genetic disease burden

Induced pluripotent Advantages: Autologous, greater potential, platform for in vitro disease models

Disadvantages: Harder to generate and expand, require genetic/epigenetic "harassment", may enter senescence sooner

The main message:

STEM CELL BIOLOGY STILL PRESENTS MANY CHALLENGES

What is needed is continued, integrated research into embryonic, somatic, and induced pluripotent stem cells