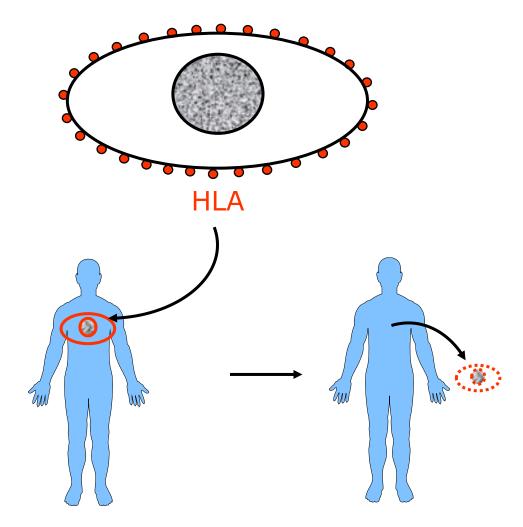
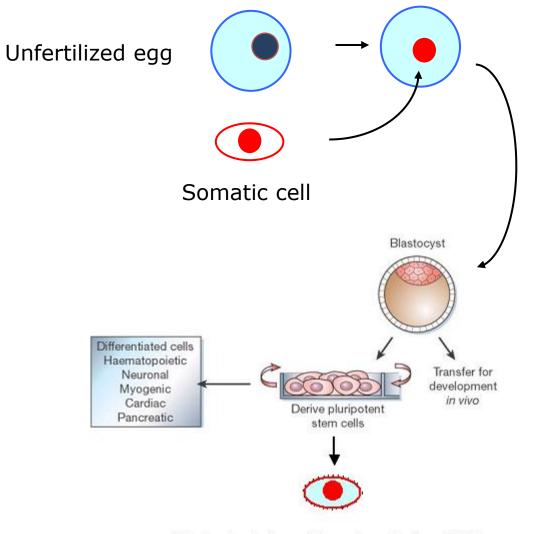

Current clinical applications of stem cells in Norway

Jan E. Brinchmann, MD, PhD Group leader Norwegian Center for Stem Cell Research Oslo University Hospital Rikshospitalet and University of Oslo

The stem cell hierarchy



Embryonic stem cells


- Proliferates indefinitely
- Always pluripotent (teratoma assay)
- Can differentiate to cells typical of all three germ layers (ectoderm, mesoderm, endoderm)
- But: we can not yet fully control the differentiation
- Teratogenesis
- Always allogeneic

Cells from different people are different

Can stem cells from one individual still be used to treat another individual?

Somatic cell nuclear transfer

Pluripotent stamcelle med pasientens HLA

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

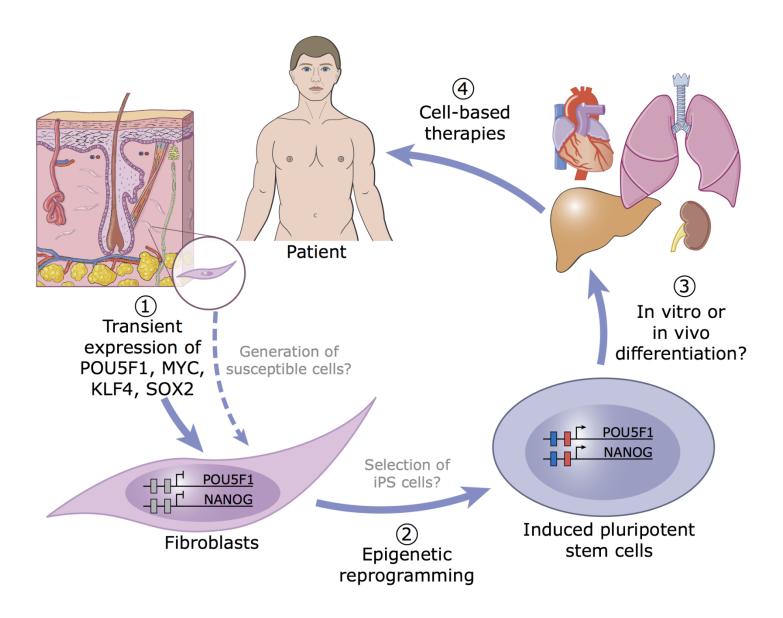
Kazutoshi Takahashi¹ and Shinya Yamanaka^{1,2,*}

¹Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

² CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

*Contact: yamanaka@frontier.kyoto-u.ac.jp

DOI 10.1016/j.cell.2006.07.024


Background:

Reprogramming of differentiated cells has been shown to be possible:

- Somatic cell nuclear transfer (Wilmut et al., 1997)
- cell fusion with embryonic stem cells (Cowan et al., 2005; Tada et al., 2001)

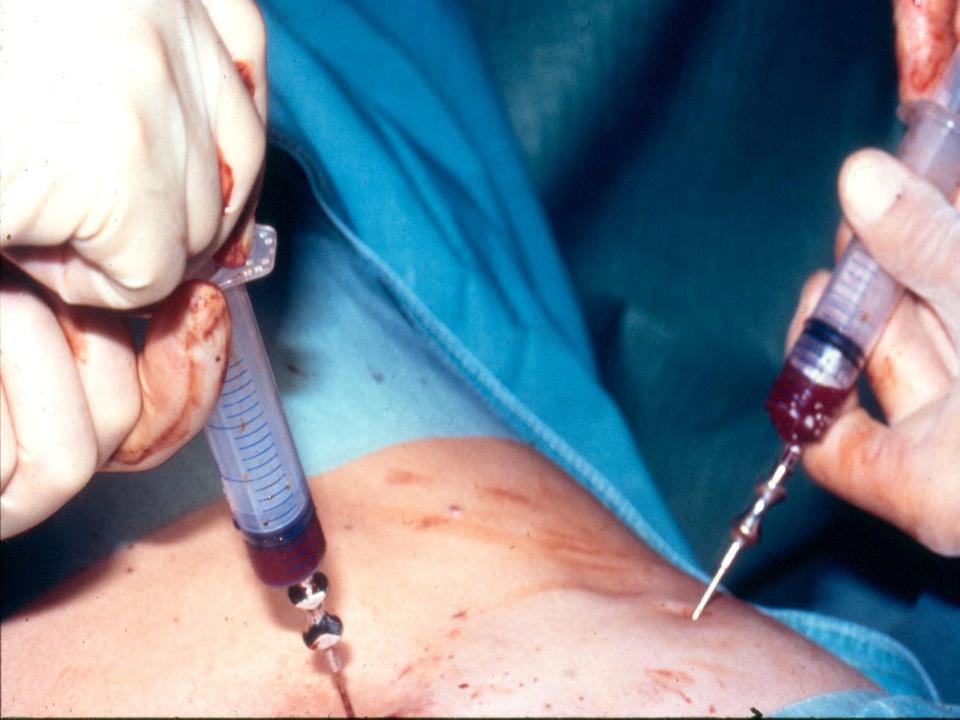
Is it possible to induce pluripotency in end differentiated cells by introducing a limited number of genes?


Induced pluripotent stem cells

Unsolved issues for the clinical use of hIPCs

- If gene transduction is to be used: random insertion of transgene?
- If the cells need to be reprogrammed to pluripotency: malignancy, neodifferentiation strategy
- If transdifferentiation is possible: complete transdifferentiation?

Hematopoietic stem cell transplantation has been used in the clinic for more than 40 years



Hematopoietic stem cell transplantations

• Autologous: From the patient herself

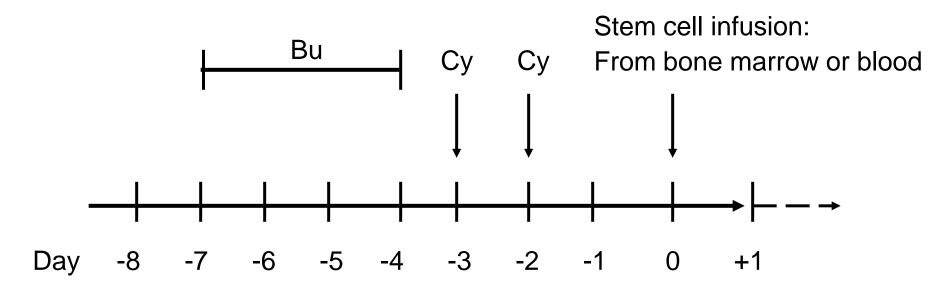
- Allogeneic: From another individual
 - » Family (including umbilical cord blood)
 - » Bone marrow donor registries
 - » Umbilical cord biobanks
 - » For all these: HLA compatibility very important

Lorentz Brinch, Department of Blood Diseases, OUS

Organization of stem cell transplants in Norway:

Autologous (høydosebehandling med autolog stamcellestøtte: HMAS)

- All University hospitals in Norway
- Oslo Universitetssykehus:
 - Ullevål: Lymphomas and multiple myelomas
 - Rikshospitalet: Multiple myelomas, solid tumors (children)
 - Radiumhospitalet: Lymphomas, some solid tumors


Lorentz Brinch, Department of Blood Diseases, OUS

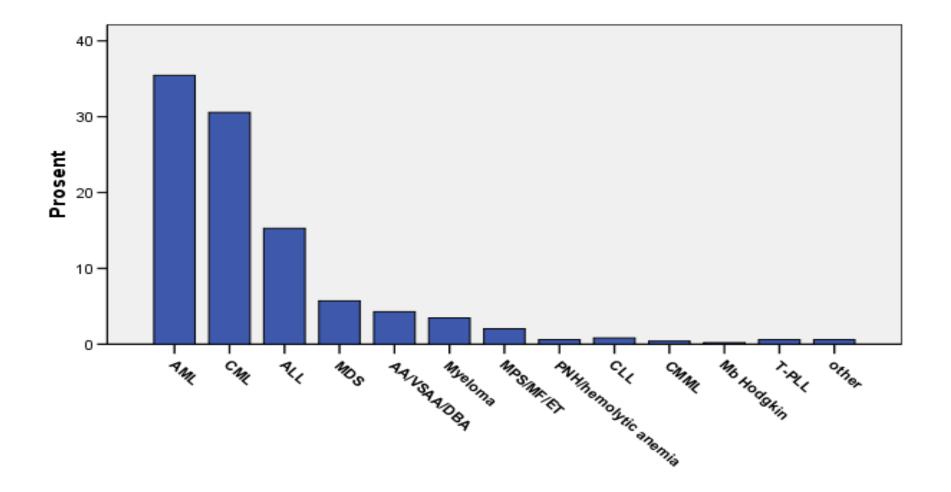
High dose chemotherapy followed by autologous bone marrow transplantation is an option for patients with lymphomas

Histology	1.line	First chemosensitive relapse	Later chemosensitive relapse	
Hodgkins lymphoma	Not recommended	Clinical option	Clinical option	
T/B lympho- blastic lymphoma	Clinical option	Not recommended	Not recommended	
Aggressive B cell NHL	Not recommended	Clinical option	Clinical option	
Transforme d NHL	Not recommended	Clinical option	Clinical option	
Follicular NHL	Not recommended	Not recommended	Clinical option	
Mantle cell NHL	Clinical option	Not recommended	Not recommended	
Aggressive T cell NHL	ACT-1 randomised study Clinical option	Clinical option		

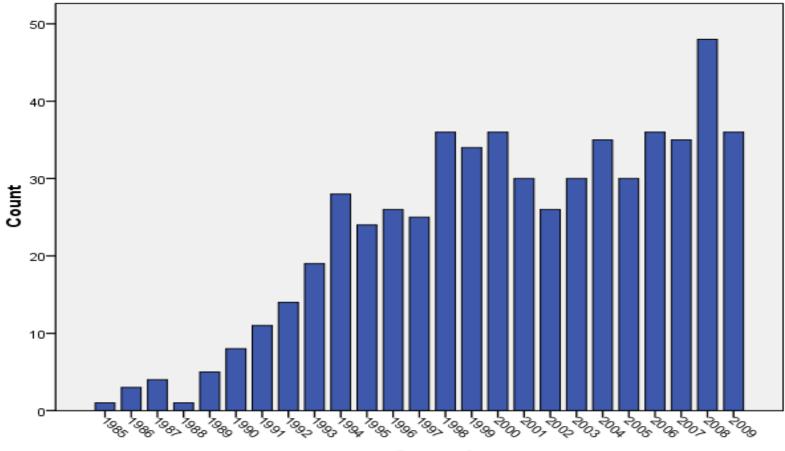
Arne Kolstad, Norwegian Radium Hospital OUS

Allogeneic stem cell transplantation: bone marrow depletion

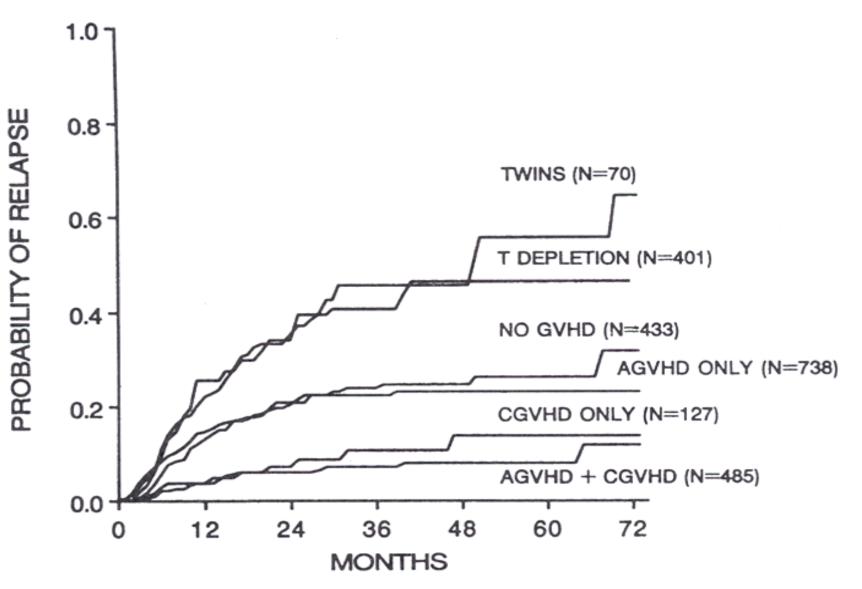
Bu: Busulfan : 16 mg/kg in total Cy: Cyclofosfamid : 120 mg/kg in total

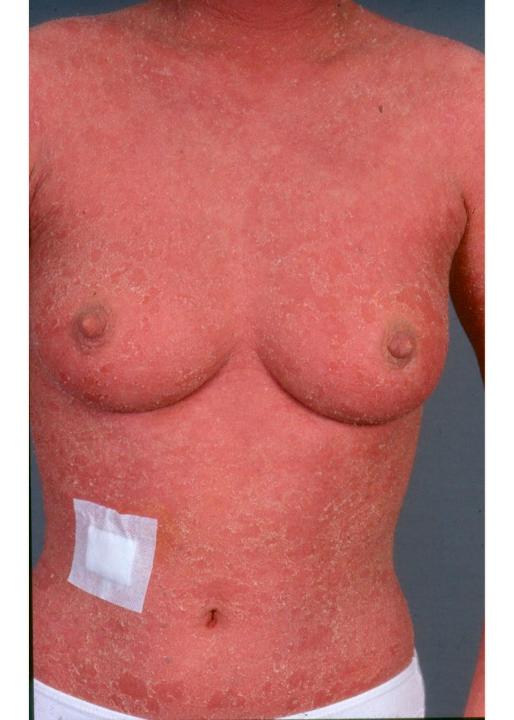

Lorentz Brinch, Department of Blood Diseases, OUS

Difference between autologous and allogeneic HSC transplantation


	Autologous	Allogeneic
Healthy stem cells	<u>+</u>	+
HLA compatibility	Yes	Very important
Transplant rejection	-	+
Need for treatment against rejections	_	+
Transplant versus malignancy effect	_	+

Lorentz Brinch, Department of Blood Diseases, OUS

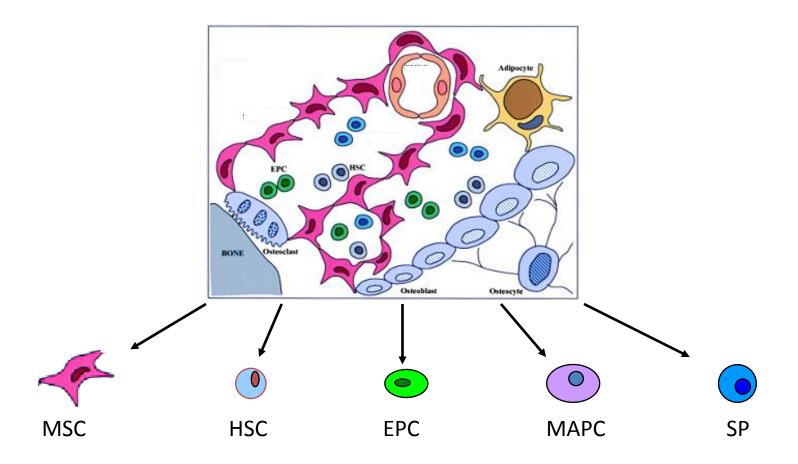

Diseases treated with allogeneic stem cell transplantation


Allogeneic stem cell transplantation in Norway: only performed at Rikshospitalet

year of transplant

Hematopoietic cell transplantation, 2nd edition 1998;319

Tissue engineering

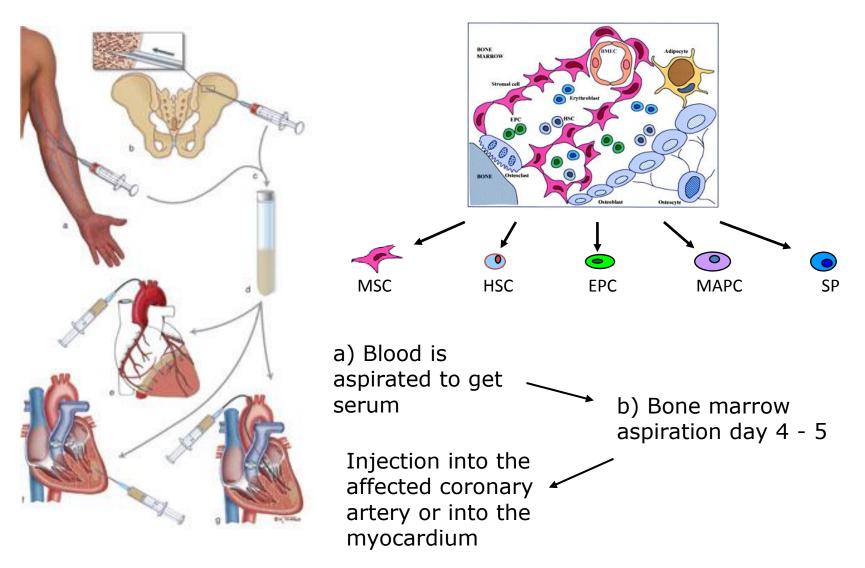

Elements:

- Cells
- Biomaterials
- Imaging
- Advanced surgery

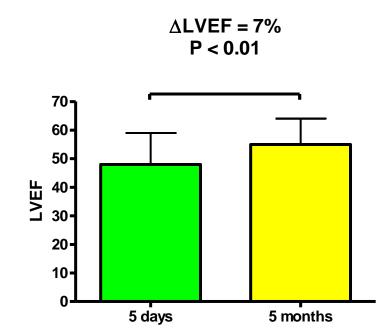
In the clinic:

- Heart
- Cartilage
- Bone
- Eye

Stem/progenitor cells in the bone marrow

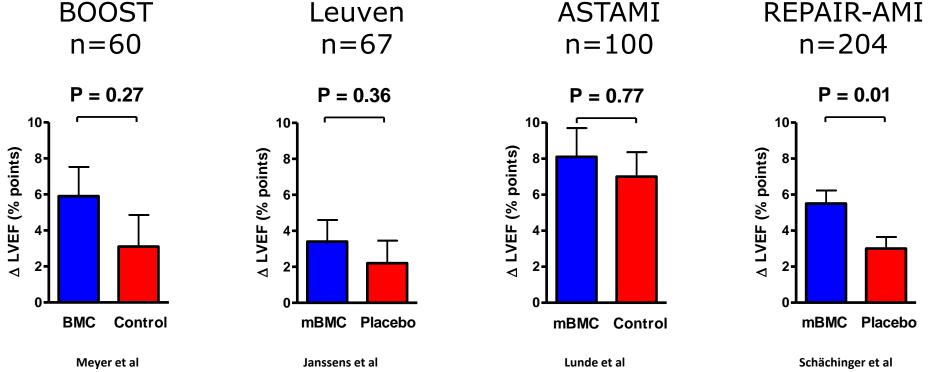


Repair of Infarcted Myocardium by Autologous Intracoronary Mononuclear Bone Marrow Cell Transplantation in Humans


Bodo E. Strauer, MD; Michael Brehm, MD; Tobias Zeus, MD; Matthias Köstering, MD; Anna Hernandez, PhD; Rüdiger V. Sorg, PhD; Gesine Kögler, PhD; Peter Wernet, MD

- Background—Experimental data suggest that bone marrow-derived cells may contribute to the healing of myocardial infarction (MI). For this reason, we analyzed 10 patients who were treated by intracoronary transplantation of autologous, mononuclear bone marrow cells (BMCs) in addition to standard therapy after MI.
- Methods and Results—After standard therapy for acute MI, 10 patients were transplanted with autologous mononuclear BMCs via a balloon catheter placed into the infarct-related artery during balloon dilatation (percutaneous transluminal coronary angioplasty). Another 10 patients with acute MI were treated by standard therapy alone. After 3 months of follow-up, the infarct region (determined by left ventriculography) had decreased significantly within the cell therapy group (from 30 ± 13 to $12\pm7\%$, P=0.005) and was also significantly smaller compared with the standard therapy group (P=0.04). Likewise, infarction wall movement velocity increased significantly only in the cell therapy group (from 2.0 ± 1.1 to 4.0 ± 2.6 cm/s, P=0.028). Further cardiac examinations (dobutamine stress echocardiography, radionuclide ventriculography, and catheterization of the right heart) were performed for the cell therapy group and showed significant improvement in stroke volume index, left ventricular end-systolic volume and contractility (ratio of systolic pressure and end-systolic volume), and myocardial perfusion of the infarct region.
- Conclusions—These results demonstrate for the first time that selective intracoronary transplantation of autologous, mononuclear BMCs is safe and seems to be effective under clinical conditions. The marked therapeutic effect may be attributed to BMC-associated myocardial regeneration and neovascularization. (Circulation. 2002;106:1913-1918.)

Cardiac repair: can bone marrow cells improve myocardial function in patients with acute myocardial infarction (AMI)?

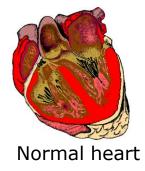


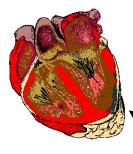
Expected improvement in LVEF after AMI by routine treatment

Baks et al, Eur Heart J 2005;26:1070

Results on LVEF in clinical trials with Bone Marrow Cells in AMI

Circulation 2006;113:1287-1294

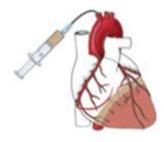

Lancet 2006;367:113-21


NEJM 2006;355:1199-209

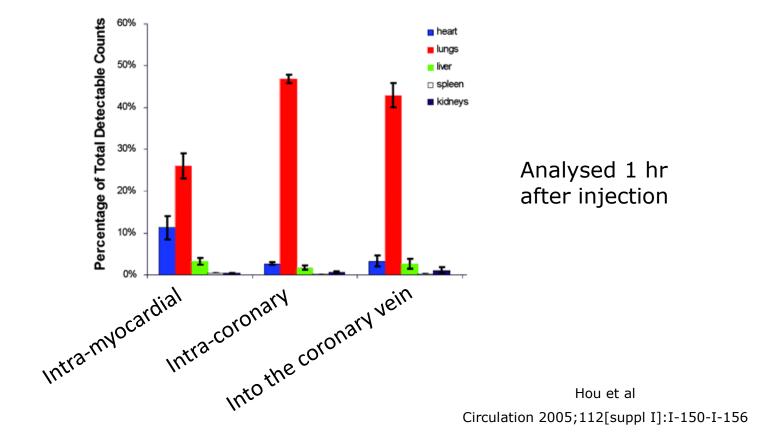
NEJM 2006;355:1210-21

What is the reason for the limited success?

The human left ventricle contains $\sim 4-5 \times 10^9$ cardiomyocytes



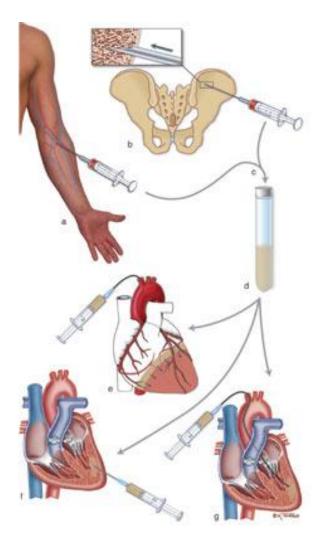
25% MI destroys ~ 1x10⁹ cardiomyocytes


Approximately 1% HSC in BM-MNC

AMI

Injection of $150x1x10^6$ BM-MNC $\rightarrow 1.5x10^6$ HSC

Very few of the injected cells home to or remain in the myocardium



ARTICLES				
		medicine		
cardiomyocytes at a lo but not transdifferent ^{Jens M Nygren¹, Stefan Jovinge^{1,2}, Martin J}	d hematopoietic cells و w frequency through iation عreitbach ³ , Petter Säwén ¹ , Wilhelm Röll ⁴ , IG	cell fusion,		
lalal Taneera ¹ , Bernd K Fleischmann ³ & St Nat Med 2004;10:494-501	Haematopoi mature hae ischaemic n	matopoietic	; fates in	
	Leora B. Balsam ¹ , Amy Theo Kofidis ¹ , Irving L Nature 2004;428:668-73	transdifferer myocytes in Charles E. Murry ¹ , Marl Hidehiro Nakajima ² , His	etic stem cells do not ntiate into cardiac myocardial infarcts k H. Soonpaa ² , Hans Reinecke ¹ , sako O. Nakajima ² , Michael Rubart ² , thi ² *, Jitka Ismail Virag ¹ , Stephen H. Bartelmez ³ ,	
		Veronica Poppa ¹ , Gillia David A. Williams ² * & L Nature 2004;428:664-8	Prodewd ² Joshus D. Dowell ²	*, Grazia Esposito*, Grazia laffaldano*, , John Muraski*, Roberto Alvarez*, arosa Leri*, Mark A. Sussman*, NY 10595; *Cardiovascular Research Center, Ile, Louisville, KY 40292; and
			PNAS 2007;104:17783-8	

Results of Intracoronary Stem Cell Therapy After Acute Myocardial Infarction

Jochen Wöhrle, MD^{a,*}, Nico Merkle, MD^a, Volker Mailänder, MD^b, Thorsten Nusser, MD^a, Peter Schauwecker, MD^b, Fabian von Scheidt^a, Klaus Schwarz, MD^b, Martin Bommer, MD^c, Markus Wiesneth, MD^b, Hubert Schrezenmeier, MD^b, and Vinzenz Hombach, MD^a

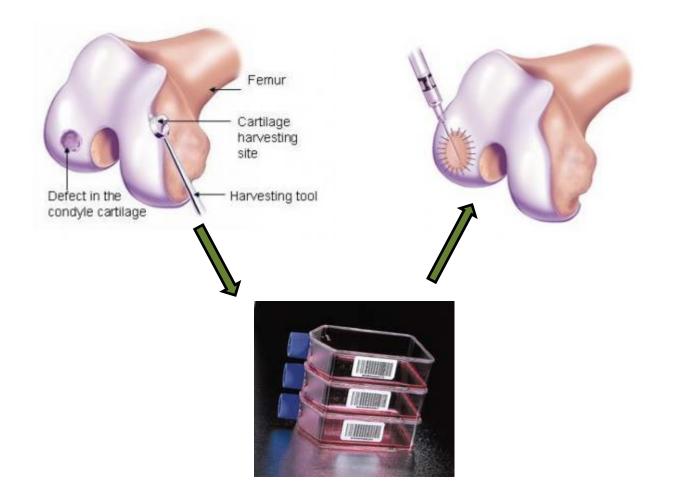
or LV end-diastolic and end-systolic volume indexes. In conclusion, in this rigorous double-blind, randomized, placebo-controlled trial, we did not observe an evidence for a positive effect for intracoronary BMC versus placebo therapy with respect to LV ejection fraction, LV volume indexes, or infarct size. © 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;105:804–812)

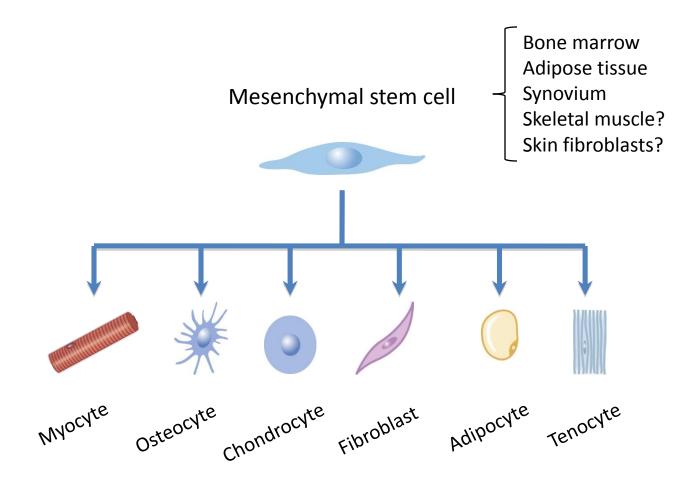
Is it possible to improve myocardial function using cell therapy or tissue engineering following AMI? **Probably**

Should this be offered to patients in acute stage MI? Unlikely, the cells need to be expanded in vitro, and should be autologous

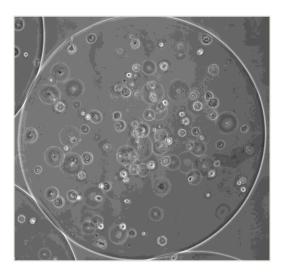
Which are the best cells to use? Not known, animal studies are ongoing

What would be the most likely mechanism for the effect of cell therapy?

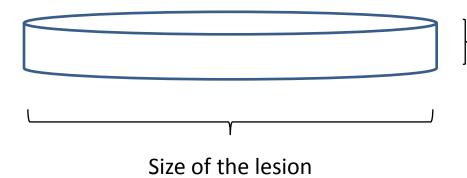

- Transdifferentiation transplanted cells → cardiomyocytes? Perhaps, but unlikely
- Stimulation of endogenous repair mechanisms?
 More likely


 Improvement of local blood supply? Important, may need to include cells specifically for this purpose

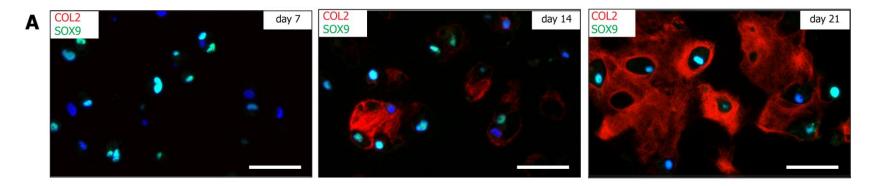
Can adult stem cells be used to treat focal lesions of hyaline cartilage?

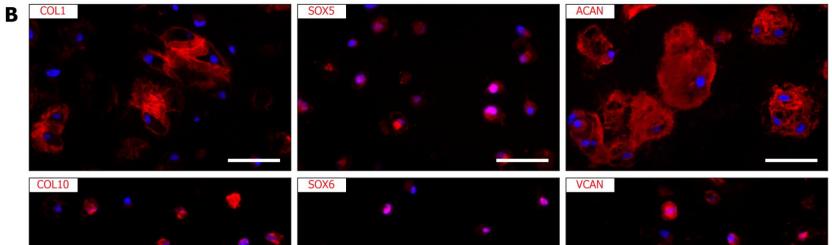


In vitro expanded chondrocytes is used for regeneration of hyaline cartilage, but the result is frequently fibrocartilage

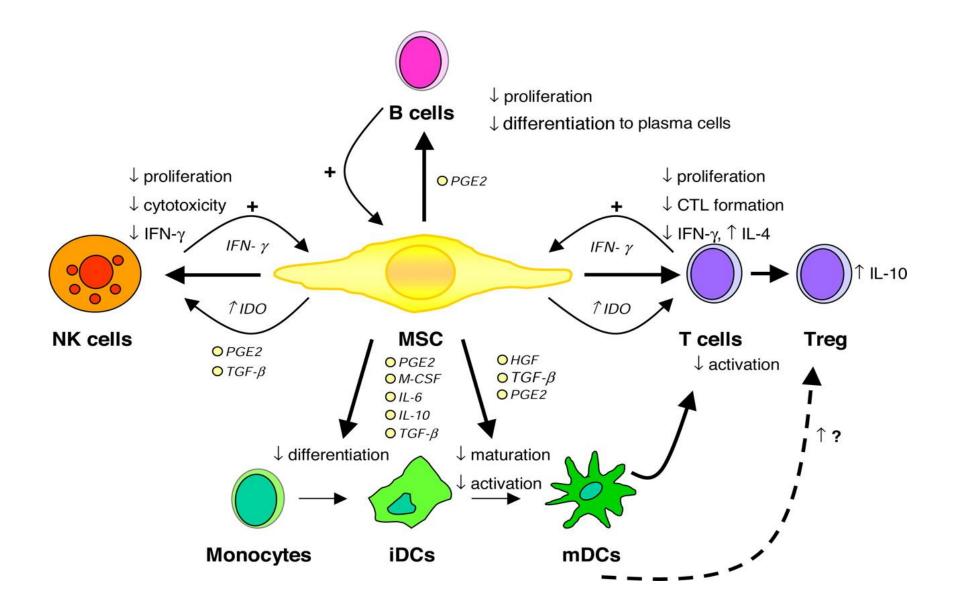


Alginate as a scaffold for chondrogenic differentiation of MSC



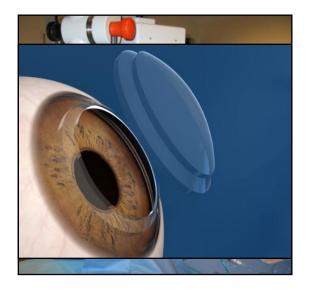

The scaffold can be made to shape of choice

- Cells are quite evenly distributed
- The alginate can be easily removed
- Alginate may be made biodegradable?



3 mm = thickness of hyaline cartilage of knee Expression of proteins of importance for chondrogenesis after 21 days of differentiation in alginate discs

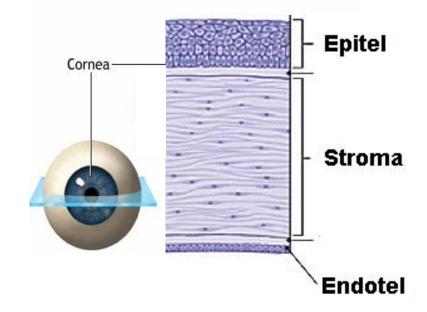
MSC may exert immunosuppressive effects

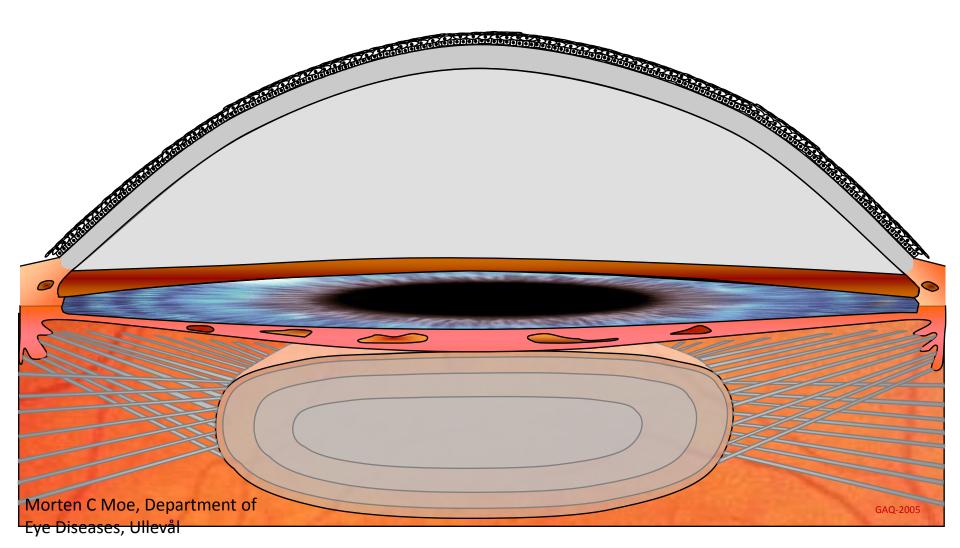

Diseases of the cornea may be treated with stem cell therapy

- The first corneal transplant was performed in Norway in 1933.
- Corneas are kept in a tissue bank at the Center for Eye Research, Ullevål
- Can be stored for up to 4 weeks befor the operation.

Challenges:

- Some corneas must be discarded before the operation due to poor quality tissue.
- Some transplanted corneas become nontranslucent
- There is a lack of corneas, many are bought from USA, expensive

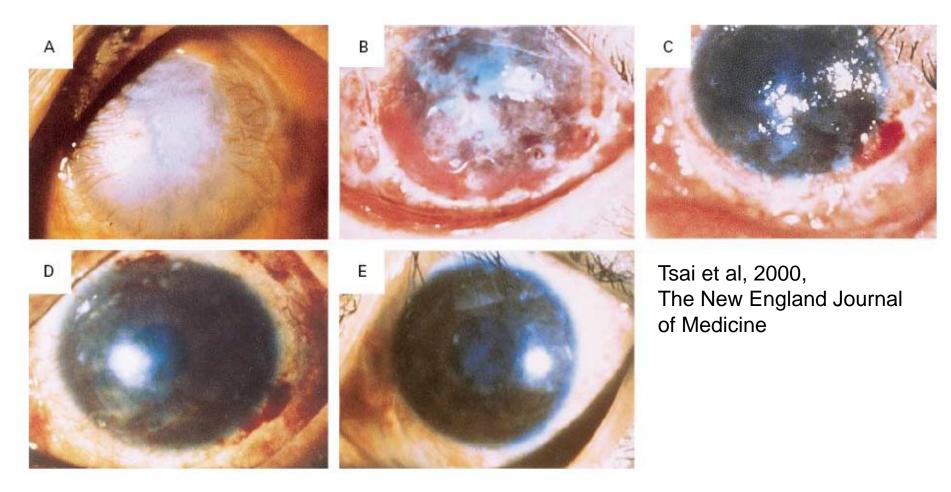



Morten C Moe, Department of Eye Diseases, Ullevål

Strategy

- The different layers of the cornea have their own stem cells
- In patients with damage to only one of the corneal layers, stem cell therapy may be sufficient

Transplantation of autologous limbal stem cells to a patient with stem cell failure

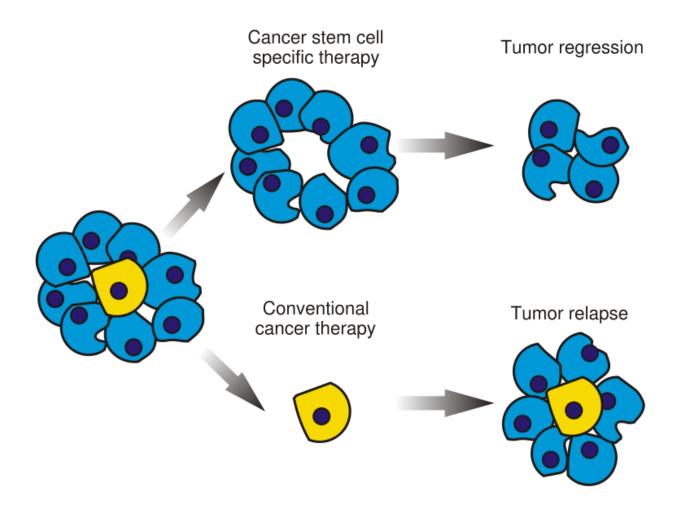


Corrosion damage

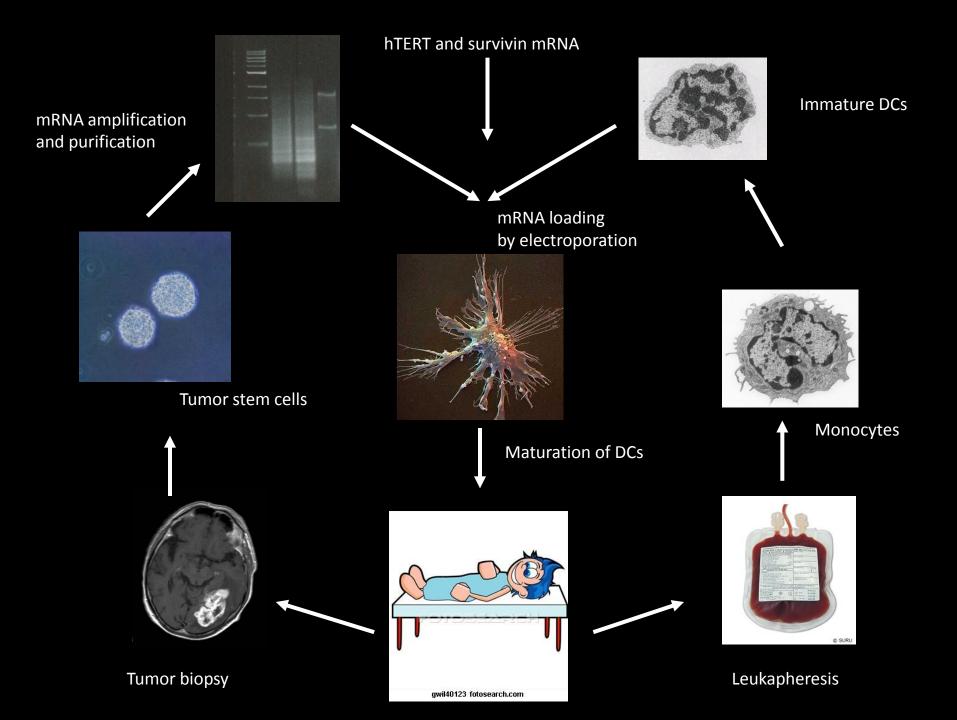
Preoperativt

Dag 1

Dag 7



Dag 30

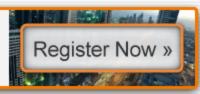

Dag 450

Morten C Moe, Department of Eye Diseases, Ullevål

Tumor stem cells

Can expressed genes from glioblastoma stem cells be used in a therapeutic vaccination?

The Ex vivo cell laboratory is a GMP regulated production facility for cells for therapeutic trials


2,17#		¥ 🖌			
💵 🕈 🕌 🖉	ð tļ 🔀				
27INK-1-B-AL-F	27INK-2-T-RF	28INK-2-B-TS-F	29INK-2-B-O2-F	33-LN2-2-H-F	Lasair II 510
	3 27INK-2-T-RF-F	28INK-2-T-AL-F		0 33-LN2-2-HH-F	LII
27INK-1-B-CO2-F	27INK-2-T-TE		0.0 29INK-2-B-RF-F	33-LN2-2-L-F	MINILAZ REMOTE
	0 27INK-2-T-TE-F	28INK-2-T-CO2-F			0 N2-Sidebytte 0
27INK-1-B-02-F	27INK-2-T-TS		0.0 29INK-2-B-TE-F	33-LN2-2-LL-F 0.0	· ·
	4 27INK-2-T-TS-F	28INK-2-T-02-F		.0 33-LN2-2-SENS 0.0	· ·
27INK-1-B-RF-F	28INK-1-B-AL-F		0.0 29INK-2-B-TS-F	33-LN2-2-TE -166.0	
		28INK-2-T-RF-F	29INK-2-D-15-F	33-LN2-2-TE-F 0.0	
					0 PE27/04 52
27INK-1-B-TE-F 27INK-1-B-TS 37	28INK-1-B-CO2-F				
		28INK-2-T-TE-F	29INK-2-T-CO2-F		
27INK-1-B-TS-F	28INK-1-B-O2-F		0.0 29INK-2-T-O2	365A403 Vent.drift 0.0	
		.9 28INK-2-T-TS-F	29INK-2-T-O2-F	365A403 Vent.svikt 0.0	
	.0 28INK-1-B-RF-F	29INK-1-B-AL-F		.0 365FE01 10159.9	
			0.0 29INK-2-T-RF-F		6 PE29/31 13
	.0 28INK-1-B-TE-F	29INK-1-B-CO2-F			7 PE31/04 34
27INK-1-T-O2-F		.5 29INK-1-B-O2	29INK-2-T-TE-F		4 PE32/04 20
	.3 28INK-1-B-TS-F	29INK-1-B-O2-F			Rom 32
	.0 28INK-1-T-AL-F		0.0 29INK-2-T-TS-F		5 Sikringsbrudd A4-21 0
		0 29INK-1-B-RF-F	32INK-1-B-AL-G		6 TE27 19
	.0 28INK-1-T-CO2-F		0.0 32INK-1-B-CO2		5 TE27K1B 6 1 TE27K1T 7
		0 29INK-1-B-TE-F	32INK-1-B-TE	365TE02 18.1	
7INK-1-T-TS-F 7INK-2-B-AL-F	28INK-1-T-O2-F		0.0 32INK-1-B-TS		2 TE28 19
		0 29INK-1-B-TS-F	32INK-1-T-AL-G	371A0401 Kjøling alarm	TE28F1B TE28K1T
27INK-2-B-CO2 5 27INK-2-B-CO2-F	.0 28INK-1-T-RF-F 28INK-1-T-TE 0	29INK-1-T-AL-F 0 29INK-1-T-CO2	32INK-1-T-CO2 32INK-1-T-TE	371A0401 Kjøling drift 371TE01	TE28K2B
	0 28INK-1-T-TE-F	29INK-1-T-CO2-F	32INK-1-T-TS	37403	TE28K2T
7INK-2-B-02 21		0 29INK-1-T-O2	33 LN2-1-AL		D TE29 19
7INK-2-B-C2-F 92		29INK-1-T-O2-F	33 LN2-1-FIL	FP26L1 50	
7INK-2-B-RF-F	28INK-2-B-AL-F		0.0 33 LN2-1-H-F	FP27L1 105	
	28INK-2-B-CO2	29INK-1-T-RF-F	33 LN2-1-HH-F	FP27L2	7 TE29K2B
7INK-2-B-TE-F	28INK-2-B-CO2-F		0.0 33 LN2-1-L-F	FP28L1 1	
7INK-2-B-TS 37		29INK-1-T-TE-F	33 LN2-1-LL	FP28L2 21	3 TE31 19
7INK-2-B-TS-F	28INK-2-B-O2-F		0.0 33 LN2-1-LL-F	FP29L1 652	2 TE32 24
7INK-2-T-AL-F	28INK-2-B-RF	29INK-1-T-TS-F	33 LN2-1-SENS	FP29L2 56	
7INK-2-T-CO2	28INK-2-B-RF-F	29INK-2-B-AL-F	33 LN2-1-TE	FP31L1 16	
7INK-2-T-CO2-F	28INK-2-B-TE		0.0 33 LN2-1-TE-F	HE27 37.	
7INK-2-T-02	28INK-2-B-TE-F	29INK-2-B-CO2-F			3 TE32K1T
7INK-2-T-02-F	28INK-2-B-TS		0.0 33-LN2-2-FIL		7 Ultrafryser A1 (
r Help, press F1	1 SOUGHARDON D	2711112-2-D-02	STERATORIE	NUM ADMIN	- onanyser An

Personal consultation in Dubai

Home	About	Treatments Po	atient Stories	Request information	Contact	
	News					

Home

The XCell-Center is a private clinic group and institute for regenerative medicine located in Düsseldorf and Cologne, Germany. Bringing together therapeutical use of autologous adult stem cells and medical research, it is our mission to:

- Provide therapeutic application of autologous adult stem cells to patients at the highest medical standard;
- Extend existing knowledge on the effects of autologous adult stem cells by supporting pre-clinical and clinical research.

We offer patients with degenerative diseases the opportunity to undergo an innovative and promising stem cell treatment.

Since the start in January 2007, **more than 2500 patients** have safely undergone our various stem cell treatments.

News

FOLLOW US ON Luitter

Stem cells and tumor risk more ...

April 30, 2010 Patient Fundraising Web Sites -Lend them a helping hand! more...

April 28, 2010 PRESS RELEASE - Statistics Confirm Spinal Cord Injury Patients Improving After Stem Cell Therapy more...

March 25, 2010 Video Documentary of Dementia Patient, Giulia Serafini's Remarkable Recovery Following Stem Cell Therapy more...

March 10, 2010 NBC News Video Feature "Small Miracles: How life has changed for Dom and H" (cerebral palsy) more...

Watch the

video now!

Therapeutic use

SÜD

ISO 9001

The XCell-Center treats patients with their own autologous adult stem cells. It is the first private clinic worldwide to hold an official license for the extraction and approval of stem cell material for autologous treatment.

Therapy focuses on the treatment of cerebral palsy, spinal cord injuries, diabetes mellitus (types 1 and 2 as well as sequelae) and neurological diseases/disorders such as Parkinson's and stroke. Further indications include multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Alzheimer's as well as arthritis, heart disease, and eye diseases such as macular degeneration.

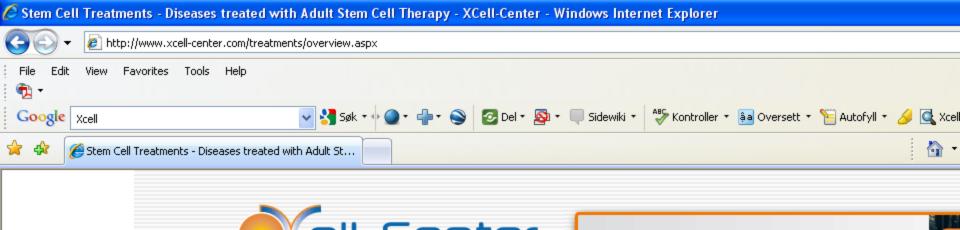
Advisory board

Learn more about the XCell-Center's Scientific Partners.

March 1 Encourag Results N

March 9 60% of S Improved 140 Spin Patients

March 8 XCell-Ce Results f Cell Trea


Februar The Lewis Stem Ce Cousins

Februar Saving Li

Saving Li Mesenchy treatmen limb isch Analysis

Februar

Autologo Transplai Puncture Patients i

Related topics

Healing potential Methods of use Physiological mechanism Limits of therapy No Tumor risk Treatment process

Overview of our stem cell treatment

As a patient or the friend or relative of a patient, you have likely consulted this website to learn some basic facts about our stem cell treatment offerings. Therefore, we have carefully compiled relevant information on these pages that we hope will help you.

We would like to point out from the start that there are still some questions concerning the function of stem cells that science has not yet been able to answer, and that despite the advances that have been made recently, there is no guarantee for the success of stem cell therapy. Nevertheless, every week we see this new "medicine" helping a lot of people. Therefore, we offer therapies with adult stem cells whenever classical treatment does not yield the type of results that are satisfactory for the patient.

After evaluating important information from each prospective patient's medical history, our medical team decides whether the prospective patient is a suitable vi

News


FOLLOW

Stem cel

April 30 Patient Fi Lend thei

April 28 PRESS R Confirm : Improvin Therapy

March 2 Video Do

Overview Diseases treated Results Glossary FAQ

Related topics

Healing potential Methods of use Physiological mechanism Limits of therapy No Tumor risk Treatment process

Methods of use - adult stem cells

The use of endogenous adult stem cells is ethical and legally straightforward. Under German law, the extracted stem cells are categorized as drugs. Because they are exclusively for personal use, they are individual drugs, and under German law do not require the same governmental approval as other drugs. Despite this, the clinic still has to obtain a manufacturing license from the surveillance authority. At the XCell-Center, it is guaranteed that the processes of extraction, cleaning and transplantation are all carried out in compliance with Good Manufacturing Practice (GMP) standards, thus guaranteeing maximum quality and safety for the patient.

For the last few years, attempts at therapy with adult stem cells from bone marrow have been carried out at university hospitals. This means that unlike animal testing with embryonic stem cells, adult stem cells are in-part, already being clinically tested. The well-documented success of the cardiologist Prof. Dr. Bodo Strauer from Düsseldorf can be seen as an example. He treated a patient suffering from a series of heart attacks for whom common therapies could not assure any chance of survival with the patient's own bone marrow stem cells. Nine days after the stem cells had been injected into the diseased area, the patient was able to leave the intensive care unit. Up to now, more than 300 patients have been treated in Düsseldorf using this procedure - most of them successfully.

The XCell-Center's treatment is based on the therapy experiences of more

News

FOLLOW

Stem cel

April 30 Patient Fi Lend thei

April 28 PRESS R Confirm : Improvin Therapy

March 2 Video Do Patient, C Remarka Stem Ce

March 1 NBC New Miracles: Stem cells carry a lot of promise for the development of new therapeutic options, but they should be introduced into the clinic with great caution

