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Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A
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The MDM2-antagonist Nutlin 3A can efficiently induce apoptosis
in osteosarcoma cell lines with amplified MDM2. However, Nutlin-
based therapy could be even more important in more common
sarcoma types where this aberration is frequent. The well- and de-
differentiated liposarcomas have complex marker chromosomes,
consistently including multiple copies of the MDM2 locus. Since
amplification seems to be a primary aberration in these tumors,
whereas amplification in osteosarcoma generally is a progression
marker, the underlying biological mechanisms may be different.
We have therefore investigated the molecular response to Nutlin
treatment in several liposarcoma cell lines with such markers, as
well as a panel of other sarcoma cell lines. We report that Nutlin
efficiently stabilized p53 and induced downstream p53 dependent
transcription and apoptosis in liposarcoma cells with amplified
MDM2 in vitro. Some effect of Nutlin was also observed on cell
lines without amplified MDM2 but with wt TP53, but no apoptosis
was induced. The MDM4 protein, reported to interfere with the
reactivation of p53, was undetectable in cells with amplified
MDM2. Thus, Nutlin represents a promising new therapeutic prin-
ciple for the treatment of an increasing group of sarcomas.
' 2007 Wiley-Liss, Inc.
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The activity and level of the tumor suppressor protein p53 is
negatively regulated by the E3 ligase MDM2, which controls both
its ability to trans-activate downstream genes and its proteasome-
mediated degradation.1 In tumors with wild type p53, its activity
may be blocked through amplification and overexpression of the
MDM2 locus.2,3 Due to the central role of p53 in oncogenesis and
therapy response, the p53-MDM2 interaction is an interesting tar-
get for small-molecular therapy. The goal is to reactivate p53 and
induce downstream effects leading to programmed cell death or
increased response to DNA-damaging therapies, as has been pur-
sued by several groups.4–9 One of the most promising MDM2
antagonists is Nutlin 3A, which has been shown to activate wild
type p53 in cancer cell lines, inducing cell cycle arrest and apopto-
sis in various cell lines, including osteosarcomas with amplified
MDM2.10,11 However, amplification of MDM2 is much more fre-
quent in the more common subtype of well-differentiated liposar-
coma (WDLS) and dedifferentiated variants, where virtually all
tumors contain complex marker chromosomes that always include
multiple copies of MDM2.12 Since the role of MDM2 in the etiol-
ogy of these tumors seems different from that in osteosarcomas,
we set out to investigate the potential for Nutlin treatment and its
molecular effects. This particular type of liposarcoma can be hard
to eradicate and may dedifferentiate to aggressive variants with
high malignancy. Since inactivation of p53 may also be achieved
by amplification and overexpression of MDM4,13–15 we also
investigated whether MDM4 could be important for the response
in WDLS, although we have found only low levels of amplifica-
tion ofMDM4 in our sarcoma panel (Ohnstad, unpublished data).

For these investigations we chose 5 cell lines with amplified
MDM2, including 3 WDLS-derived lines, and, since Nutlin has
been reported to induce apoptosis in haematological cancers even

when MDM2 is not amplified,4,16,17 added 5 control cell lines with
normal MDM2-level, of which 3 had either no or mutated TP53
mRNA (Table I). The cell lines with high-level amplification con-
sistently expressed very high levels of MDM2 mRNA (Table I),
and protein (Fig. 3), whereas the cell lines with normal gene num-
ber all had low levels in comparison.

We first examined the in vitro response of our cell panel to the
active Nutlin 3A enantiomer and, as control, the virtually inactive
3B enantiomer (Table I). All cell lines with amplified MDM2
responded well to Nutlin 3A, with half-maximal growth inhibitory
concentration (IC50) from 0.6–1.9 lM, although MHM did not
reach total growth inhibition under the conditions used to deter-
mine IC50. In two of the control cell lines with wt TP53 (RMS13
and U2OS) partial growth inhibition was observed (IC50 from
3.3–3.5 lM), whereas the lines with mutated TP53 (SW872, KPD,
SAOS2) did not respond to Nutlin (IC50 > 10 lM). We docu-
mented a similar response pattern across the cell panel for drug ex-
posure of 24 and 72 hr. Nutlin 3B did not inhibit growth in any of
the cell lines tested (data not shown).

We further investigated the transcriptional response down-
stream of p53 with either of the Nutlin enantiomers. Transcript
levels for BAX, BCL2, p21, p53, MDM2 and p14ARF were assayed
after 4, 24 and 48 hr of treatment (Figs. 1a and 1b). 48 hr data
exist only for p21, p53 and MDM2 (supplementary Figs. II and
III). As expected, cell lines with highMDM2 copy number showed
a strong and Nutlin 3A-dependent upregulation of p21 transcripts
(Fig. 1a, unpaired t-test vs. control, p < 0.005) and protein (Fig.
3), indicating reactivation of p53. This was supported by increased
p53 protein levels (Fig. 3) probably due to protein stabilisa-
tion.5,10,23 However, upon treatment with 10 lM Nutlin 3A, p53
mRNA levels reproducibly decreased in all our sensitive liposar-
coma cells (Fig. 1a, unpaired t-test vs. control p < 0.01), although
less so with Nutlin 3B (Fig. 1b). This is contrary to what was
observed in OSA cells (Fig. 1b, Refs. 10–11.). Although we can-
not explain this behaviour at present, we note that in the MHM
cells, originating from a parosteal osteosarcoma, also having
marker chromosomes similar to those in WDLS, p53 showed the
same decline, perhaps due to a similar etiology.

Consistent with p53 activation, levels of MDM2 mRNA and
protein increased upon Nutlin 3A treatment (except in FU-DDLS-
1; Figs. 1a and 3, unpaired t-test vs. control p < 0.025). Only mod-
erate effects on p14ARF mRNA could be observed.
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In some of the MDM2-amplified lines, in particular MHM and
T778, but also, e.g., for MDM2 in OSA, some weaker effects
could also be observed following treatment with the 200-fold less
active Nutlin 3B enantiomer.

By expression analysis, a proapoptotic change of the BAX/
BCL2 transcript ratio was observed (Figs. 1a and 1b), and Nutlin
3A induced cell cycle arrest and DNA fragmentation (positive
TUNEL-labeling) consistent with apoptosis after 24 hr only in cell
lines with amplified MDM2 (Figs. 2a and 2b). In the wt TP53-cell
lines U2OS and RMS13 where MDM2 was not amplified, we
observed cell cycle arrest (Fig. 2a), but no increase of apoptotic
cell fraction upon Nutlin 3A treatment (Fig. 2b, supplementary
Fig. I).

Apoptosis as the mechanism of cell death was confirmed by
activation of Caspase 3 (CASP3) and cleavage of Poly(ADP-
Ribose)-Polymerase (PARP) in MDM2-amplified cells (Fig. 3),
although a specific PARP cleavage product of 62 kDa, per-
haps involving calpain,24 could only be detected in the MHM
cells.

The structurally related MDM4 protein can also inhibit p53 ac-
tivity, may form heterodimers with MDM2, and can apparently di-
minish the Nutlin response because it is insensitive to inhibition
by Nutlin.25–27 An exception has been reported for retinoblastoma,
where MDM4 is amplified but Nutlin is efficiently killing retino-
blastoma cells.28 Although MDM4 has been reported to be ampli-
fied in several cancer types,14,29 this was generally not the case in
our tumor panel (Ohnstad et al., unpublished). We nevertheless
investigated the possible involvement of MDM4 in the cellular
response to Nutlin in 4 of the cell lines. As can be seen in Figure
3, the 80 kDa MDM4 protein could be detected in the U2OS con-
trol line, but not in the MDM2 amplified lines, regardless of Nutlin
treatment. This is most likely caused by proteasomal degradation
of MDM4 mediated by the very high MDM2 levels, as previously
reported.30 Furthermore, a smaller band of �47 kDa appeared
upon treatment with Nutlin in the amplified cell lines, which may
be a degradation intermediate because of some inhibitory effect of
Nutlin. MDM4 isoforms of this size have been reported previously
in other cell lines.29 But the degradation mechanisms are complex,
and further investigations are evidently necessary to determine the
exact nature of these bands.

In contrast to e.g. osteosarcomas, the well-differentiated sub-
type of liposarcomas and its more malignant derivatives have
wild type p53 and amplified MDM2.12 However, little is still

known of the impact of p14ARF and MDM4 on p53 activity in
this sarcoma subtype. In this work, we detected Nutlin-induced
apoptosis only in cell lines with high MDM2 levels and wild
type TP53, and with p14ARF seemingly intact. This is in line
with the hypothesis that tumors with amplified and overex-
pressed MDM2 contain an (otherwise) intact p53 pathway,10

although contradictory findings have been described in samples
with low MDM2 expression and various genotypes of MDM4,
P14ARF and TP53.4,7,16,17,31,32 However, we cannot compare the
absolute MDM2 levels with these studies, due to lack of data at
gene, transcript and protein level. Therefore, at present, the key
requirement for Nutlin sensitivity in sarcomas seems to be wild
type TP53, in line with previous publications on Nutley inhibi-
tors.6–8,10,11,17,23 In U2OS and RMS13, representing the large
fraction of sarcomas where both MDM2 and TP53 are wild type
and show only low-level overexpression of the MDM2 locus,
some other, as yet undetected, aberration most likely blocks the
pathway downstream of p53, preventing apoptosis. Although
several of such aberrations are known,33,34 the limited selection
of liposarcoma cell lines available here does not allow us to elu-
cidate how this pathway may be deranged in such cells. More
work on e.g. MDM4 must be done to clarify what separates reg-
ulation of MDM2-p53 in (lipo)sarcomas from the other classes
of human cancers sensitive to MDM2 antagonists.

In conclusion, Nutlin 3A induces apoptosis efficiently in a
major subset of liposarcomas, and from our data one would expect
that TP53 genotype together with MDM2 amplification predicts
sensitivity to this therapeutic agent. Both the mostly juvenile
osteosarcomas, and adult liposarcomas, with their high mortality,
are very much in need of new treatment options. Depending on
the status of the p53 pathway, Nutlin could act as a sensitizer to
cytyotoxic therapy or protect proliferating normal cells from
chemotherapy- or radiation-associated DNA-damage,35 As pro-
posed lately by several groups,15,26 the lack of response to Nutlin
in some tumor types suggests the design of a novel MDM4 inhibi-
tor that may be combined with Nutlin 3A to increase the group of
cancers where p53 may be reactivated. The promise of an orally
administered specific and efficient drug with low toxicity makes
this MDM2 inhibitor an attractive new treatment option for an
increasing range of tumors. Treatment of human sarcoma-xeno-
grafts in immunodeficient mice with Nutlin 3A has already been
successful,11 and clinical trials in sarcoma patients may now be
contemplated.

TABLE I – DRUG SENSITIVITY, GENOTYPES AND CLINICAL AND BIOLOGICAL CHARACTERISTICS OF THE SARCOMA CELL LINE PANEL

Cell line Histology Patient
sex/age

Origin Site TP53 MDM2
copy number

MDM2
mRNA level

IC50 (lM) TGI (lM)

T449 WDLS F/68 Primary Retroperitoneum wt 94.6 6 6.0 776 6 0.66 0.1 1.96 0.6
T778 WDLS F/69 Relapse Retroperitoneum wt 59.8 6 1.8 28.56 1.6 1.06 0.3 2.36 0.9
FU-DDLS-1 DDLS M/61 Relapse Retroperitoneum wt 70.6 6 6.1 876 10.9 0.66 0.2 2.16 1.0
OSA OS M/19 Primary Femur wt 49.1 6 1.1 43.26 9.4 0.96 0.3 2.96 0.4
MHM OS F/42 Relapse Pelvis wt 22 6 1.6 59.56 1.9 1.96 0.3 >10
SW872 LS M/36 Unknown Unknown mut 1.1 6 0.1 0.76 0 >10 >10
KPD OS M/8 Primary Femur mut 0.5 6 0 1.16 0 >10 >10
RMS13 RMS M/17 Primary Unknown wt 1.9 6 0.2 0.96 0 3.56 1.3 >10
SAOS2 OS F/11 Unknown Unknown mut 1.4 6 0.2 2.56 0.2 >10 >10
U2OS OS F/15 Primary Tibia wt 0.7 6 0.1 3.16 0.2 3.36 1.1 >10

WDLS, well differentiated liposarcoma; DDLS, dedifferentiated liposarcoma; OS, osteosarcoma; LS, undifferentiated liposarcoma,
unspecified; RMS, rhabdomyosarcoma; wt, wild type; mut, mutated; TGI, total growth inhibition; IC50, concentration required for 50%
growth inhibition. The drug concentration required for 50% growth inhibition (IC50), and total growth inhibition (TGI) was determined using the
Sulphorhodamine B (SRB) assay18 after 120 h exposure to Nutlin 3A. IC50 and TGI are presented as mean 6SD of at least 3 experiments. MDM2
copy number was determined with SYBR-green RT-PCR on 5 nanograms of genomic DNA, initially purified using a phenol-based procedure adapted
from.19 The albumin gene was used as internal normalization reference. Values were expressed relative to human genomic female DNA (Promega,
Southampton, UK). Primers: MDM2 forward 50 AAGCCAAACTGGAAAACTCAACAC 30. MDM2 reverse 50 CAGGAACATCAAAGCCCTCTTC
30. Albumin forward 50 TTTATTCACATCATTCTCTC 30. Albumin reverse 50GAGTGAGATATGAGTTGAG 30. Relative MDM2 expression was
determined as described in the legend of Figure 1. TP53 genotypes were determined by the Roche TP53 Genechip, as described elsewhere (Ohn-
stad et al., manuscript in preparation). The cell lines MHM (OS4520) and KPD (OS0621) were established from primary patient samples at the
Norwegian Radium Hospital. T449 (93449) and T778 (94778) were established from primary and relapsed tumor of the same patient at Hopital
de l’Archet.12 Dr. A. Thomas Look at St Jude’s hospital, Memphis, USA, kindly donated the cell lines RMS13 (Rh30) and OSA (SJSA-1 or
CRL2098; also available from the ATCC). The FU-DDLS-1 cell line was kindly provided by Dr. J. Nishio, Fukuoka University, Japan.22

SAOS2 (HTB85), U2OS (HTB96) and SW872 (HTB92) cells were purchased from the American Type Culture Collection, Rockville, MD.
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FIGURE 1 – Expression of selected genes in a cell line panel after treatment with (a) 10 lM Nutlin 3A or (b) 10 lM Nutlin 3B. Data are pre-
sented as fold-change expressed relative to untreated cell line control (t 5 0) 6SD of at least 3 experiments. Three of the noninformative control
cell lines were omitted to simplify the figure. All RT-PCR analyses were performed using Applied Biosystems 7500 thermal cycler and software.
Briefly, total RNA was isolated using Trizol (Invitrogen, Paisley, UK) following the manufacturer’s protocol. 2–5 ng cDNA was amplified, and
standard curves generated using universal microarray reference RNA (UMR, Stratagene, La Jolla, CA). As internal normalization reference we
used VIC-labeled beta-2-microglobulin, B2M. The NanoDrop apparatus (NanoDrop Technologies, Wilmington, DE) and the 2100 BioAnalyzer
(Agilent Technologies, Santa Clara, CA) were used to assay RNA/DNA quality and purity. (TaqMan assay IDs are listed in supplementary Table
I). The legend is uniform for 5 of 6 panels except as indicated for p14ARF, where KPD results were plotted instead of U2OS.
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FIGURE 1 – (CONTINUED)
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FIGURE 2 – Apoptotic response of seven selected sarcoma cell lines to treatment with 10 lMNutlin 3A for 24 and 48 hr compared to untreated
controls. Data represent the mean of minimum 2 experiments. 10,000 cells were counted in each run. (a) Cytograms and cell cycle-distributions
in viable cells, expressed as percentage of total population, rounded to the full percentage value. (b) Apoptotic percentage of total, presented with
standard deviation. Apoptotic cells were quantified after methanol-fixation by TUNEL labeling (Gavrieli et al., 1992) using a kit (#333574) from
Hoffmann-La Roche, NJ, USA. The biotin-labeled cleavage sites were labeled with FITC-conjugated streptavidin (RPN1232VI, Amersham Bio-
sciences, Little Chalfont, England). Two lg/ml Hoechst 33258 (Sigma-Aldrich, St. Louis, MD) was used to stain genomic DNA. Cells were ana-
lyzed with the ModFit and Becton Dickinson FACS DiVa software and flow cytometer with Argon (488 nm) and Krypton UV lasers (356 nm).
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