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ABSTRACT   Soft tissue sarcomas represent a hetero-
geneous group of tumors and include over 50 histotypes. 
Some of these tumor types are characterized by specific 
chromosomal translocations, whereas other types show 
complex genetic aberrations. The recent developments 
within gene expression technologies have now been 
applied to studies of soft tissue sarcomas (STS) and the 
first results indicate that genetic signatures are useful 
for classification and diagnosis. Distinctive expression 
profiles have been found in e.g. gastrointestinal stromal 
tumors (GISTs), synovial sarcomas, malignant periph-
eral nerve sheath tumors (MPNSTs), and in subsets of 
liposarcomas. The more pleomorphic tumor types, such 
as high-grade variants of leiomyosarcomas, malignant 
fibrous histiocytomas (MFHs), fibrosarcomas, and 
subtypes of liposarcomas, show a greater variability 
among the expression profiles, but interestingly subsets 
with distinctive expression profiles can be identified also 
among these tumors. The data available place many of 
the genes hypothesized to be involved in the develop-
ment of a certain type of STS, such as the KIT gene in 
GIST development, among the top discriminating genes. 
Thereby expression profiling provides novel insights 
into the pathogenesis of STS. Although much work 
remains to be done to validate the data and to define 
optimal discriminating gene lists, the current lessons 
from gene expression studies in STS are encouraging 
and imply that genetic signatures may serve as diagnos-
tic and prognostic markers and may help identify novel 
therapeutic strategies.



The DNA chip technologies utilize the advances in 
high-throughput oligonucleotide synthesis or PCR 
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amplification in order to generate arrays of immo-
bilized DNA probes that through hybridization to 
RNA or cDNA sequences can detect quantitative 
differences. Array-based gene expression analysis 
has become an important tool in projects aiming to 
refine diagnosis and prognosis. These techniques 
will probably provide important data for the devel-
opment of targeted therapies, and studies that have 
applied these technologies to bone and soft tissue 
sarcomas (STS) have provided exciting clues to the 
biology of mesenchymal tumors.

Technological issues in expression profiling

A number of different technologies may be used 
in microarray analysis, many of them available as 
commercial “ready-to-use” packages. Commercial 
systems are easy to set up, are generally more 
reproducible, but may be inflexible and expensive. 
Arrays produced by academic facilities are cheap 
and flexible, but quality controls and reproduc-
ibility may be suboptimal. The main commercial 
alternative has been synthetic oligonucleotide 
arrays from Affymetrix, but several commercial 
alternatives are now appearing that avoid the 
wide patents owned by Affymetrix. Whereas 
cDNA-based expression arrays have been the 
main academic platform, such facilities are now 
increasingly moving to oligonucleotide spotted 
arrays. Which technology to use will depend on 
the application, e.g. whether the aim is a global 
genomic screen of large tumor panels or a future 
routine screening with less expensive arrays con-
taining a moderate number of preselected probes in 
a pathology lab. The various options when it comes 
to probe design, sample preparation, labelling and 
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hybridization procedures introduce artefacts and 
biases, and at present, the jury is still out as to 
which method most correctly represent the “truth”. 
However, any of the technology platforms, when 
correctly applied, will produce a wealth of impor-
tant and reproducible data, and the main take home 
message is that within each study great care must 
be taken so that every step is done in exactly the 
same way for all samples. For review of the various 
techniques see Duggan et al. (1999), Lipschutz et 
al. (1999), and Ramaswamy et al. (2002). An over-
view of the procedures for the analysis of spotted 
arrays is given in Figure 1.

Sample preparation

Analyses of gene activity measure the relative 
abundances of all gene transcripts (mRNAs) in the 
samples. A major complication is the fragility of 
mRNAs, which are easily degraded by potent and 
robust enzymes (RNAses) present in the tissues or 
cells. Thus, when tissues are collected, it is criti-
cal that either the RNA is quickly extracted (or the 
tissue is dissolved in a solution that inactivates the 
RNAses), or they are cooled on ice, to keep cells 
intact until freezing at –80º C or extraction is pos-
sible. When the tissues become anoxic and die, 
the RNA quickly deteriorates. Although formalin 
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Figure 1. Basics of microarray analysis. a) RNA purified from tumor samples is used to make cDNA that is 
labelled with a fluorescent dye. This labelled cDNA is hybridized to the microarrays together with a reference 
cDNA labelled with a different dye, which is used as an internal standard. b) After hybridization and washing, 
the slide is scanned by a special laser scanner, and the amount of cDNA from the sample and the reference that 
has hybridised to each spot is measured as the intensity values for the two fluorescent dyes. The ratio values, 
showing the expression levels in samples relative to reference, are frequently displayed as coloured squares, 
where red designates higher and green lower expression.



36                                                                                                            Acta Orthop Scand (Suppl 311) 2004; 75 Acta Orthop Scand (Suppl 311) 2004; 75                                                                                                            37

fixation will inactivate RNAses, this is too slow to 
prevent degradation, and thus paraffin blocks are 
not suited for this kind of analysis, although more 
robust qualitative assays for specific mRNAs may 
still be possible. However, variable RNA quality 
is unavoidable for tumor samples, and one should 
be aware that uneven degradation of individual 
samples will result in artefacts, because degrada-
tion will affect the signal obtained from each spot 
depending on the probe length or distance from the 
3  ̓end of the gene.

Any purification procedure that gives intact and 
pure RNA may be used, but requirements are more 
stringent than for many other assays. Any RNAse 
present may partially degrade the samples during 
the labelling reaction, which also may be more 
sensitive to inhibition by other impurities, such as 
polysaccharide-protein complexes, that may copu-
rify with RNA.

Some labelling protocols use purified (polyA) 
mRNA, whereas others use total RNA, and with 
few exceptions, the labelling is done by synthesis 
of cDNA copies that incorporate fluorescently 
labelled nucleotides. The cDNA is made by a 
reverse transcriptase (RT), initiated from small 
synthetic primers, that either prime from the 3  ̓
polyA tail (and other A-rich sequences), or ran-
domly along the whole sequence. The simplest 
procedure does this in the presence of labelled 
nucleotides (direct labelling). Because the fluo-
rescent groups are large and are not easily accom-
modated by especially some types of RT, and 
especially if the sequence contains stretches of the 
corresponding nucleotide, this may affect labelling 
efficiencies, leading to unreliable results (called 
dye effects). One way to avoid this is to add the 
fluorochromes after cDNA synthesis using bioti-
nylated nucleotides (“post-labelling”). 

Direct labelling is rather simple, but requires 
considerable amounts of RNA, from 10 to 50 
micrograms per microarray. This translates to 
106–108 cells, or 20 mg to 1 g of tissue, depending 
on type. Thus, various methods to amplify either 
the target RNA or the signals from the arrays are 
frequently used. In particular, if studies are to be 
done on microdissected material, this is manda-
tory. Details about these are beyond the scope here, 
but the procedures employ various manipulations 
to achieve representative multiplication of target 

mRNAs, either by PCR-based techniques, or by 
making cDNA copies that include RNA promoters 
so that multiple cRNA copies can be made from 
each cDNA. Using such procedures, nanogram 
amounts of RNA may be used, but care is needed 
to avoid artefacts due to the many manipulations, 
giving various biases (Nygaard et al. 2003). What-
ever method is used, the results will usually not 
compare well with those from experiments done 
with another method.

Reference samples

A reference sample, labelled with a different 
fluorochrome, is generally included as an internal 
control in hybridizations to spotted arrays, allow-
ing calibration of the signals between experiments. 
For each spot the signal from the target to be inves-
tigated and reference can be measured separately, 
and the ratio between the two net signals is calcu-
lated (Figure 1b), and this is the measure of rela-
tive expression level that is used in further analysis 
(see bioinformatics section). It is important for 
this purpose that the reference gives a signal in 
most of the spots, because otherwise one cannot 
calculate a ratio. Additionally, it is important that 
there is a reproducible supply of the reference, so 
that new samples or panels can be compared with 
older results. At the biological level, it is impor-
tant to understand the relevance of this reference, 
as it determines the interpretation of increases or 
decreases in expression. For profiling of tumor 
panels, a commercially provided mixture of RNA 
from several cell lines is advantageous since these 
are prepared in large batches at an industrial scale 
with limited batch variation. We have produced 
a tumor-focused reference that includes sarcoma 
samples. This reference gave a better representation 
of the genes expressed in sarcomas than the com-
mercial cell line-based reference (Berner, Namløs 
and Myklebost, unpublished). A commercial ref-
erence sample from human tissues, which would 
be expected to be more suited to tumor profiling 
than cell lines is also available. Importantly, for 
tumor profiling, it is the pattern of signals between 
the tumor samples that is important, whereas the 
apparent up-regulation or down-regulation relative 
to a cell line reference has no particular biological 
significance.
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cDNA microarray

As the name implies, the probes of these arrays 
consist of cDNAs, partial copies of human 
mRNAs, usually from the large collection of the 
IMAGE Consortium. These cDNAs are generally 
short, i.e. 500-2000 bases, and made from the 3  ̓
end of the mRNA, primed from the polyA tail. 
Because most protocols for labelling of samples 
for microarray analysis are primed from the 3  ̓
end, it is convenient that the probes also are from 
this end, as the 5  ̓parts of the mRNA is frequently 
lost due to partial degradation, and it is difficult 
to produce long labelled cDNAs. Most labs use 
the 40 k Unigene set of clones, consisting of 40 
000 bacterial clones, each containing (in prin-
ciple) one single IMAGE cDNA, each supposed 
to represent one unique gene (see bioinformatics 
section). The bacteria are grown, plasmid purified, 
and the cDNA inserts amplified in 96-well format. 
Because of contamination problems, both at the 
plate replication steps at the repository, and during 
probe preparation locally, these clone collections 
may result in some probes containing more than 
one PCR fragment, some containing the wrong 
probe, and some being absent. Up to 30 % errone-
ous probes have been reported for IMAGE-based 
arrays (Knight 2001). Thus, for important results, 
verification by other techniques such as real-time 
PCR or Northern blotting is necessary, and also 
sequence verification of subsets of the array probes 
is recommended.

An advantage of the cDNA arrays is that dif-
ferential mRNA splicing is less of a problem due 
to the length of the probes. On the other hand, 
crosshybridization of transcripts from genes 
having some sequence similarity to the probe is a 
significant problem.

The cDNA arrays are invariably produced by 
robotic printing of the PCR fragments onto solid 
surfaces, most commonly specially prepared glass 
microscope slides. This gives spot sizes of around 
100 μm, thus production of arrays of 40 000 spots 
is possible on standard microscope slides.

Oligonucleotide arrays

Like cDNA slides, oligonucleotide arrays may be 
produced by robotic printing, but some commer-
cial suppliers, including Affymetrix and Rosetta, 
synthesize the oligonucleotides directly on the 

solid surface. The probes may be short, e.g. 22 
bases for Affymetrix, or long, e.g. 60-70-mers is 
most common for spotted arrays. Because they are 
short, the selection of which part of the gene to 
represent is critical. When done carefully, cross-
hybridization with other genes can be avoided, 
and all probes can have very similar hybridization 
properties, thus giving strong and reliable results. 
If mRNA splicing information is available, one or 
more probes can usually be designed to represent 
all known splice variants. An important advantage 
for in-house production of oligonucleotide arrays 
is the reduced handling and crosscontamination 
risk. Thus, on these arrays it is unlikely that a spot 
will contain a wrong probe.

Technological issues in profiling by genomic 
microarrays

One may also use microarrays to analyse DNA 
copy numbers in tumors. In this way, amplifica-
tions and deletions can be assayed genome-wide. 
Comparative genomic hybridization (CGH), since 
its initial description by Kallioniemi et al. (1992), 
has been widely used to detect and map changes 
in copy number in tumors. In CGH, DNA from a 
test sample (tumor) and reference (blood) are dif-
ferentially labelled and hybridized competitively 
to normal metaphase chromosomes. The ratios of 
fluorescence between the test and reference DNA 
is calculated along several copies of each chromo-
some, providing information on the relative copy 
number in each chromosome segment. In recent 
years the genome representation has been replaced 
by an array of large genomic clones, cDNAs or 
oligonucleotides (Pinkel et al. 1998, Pollack et al. 
1999). The array format CGH provides a number 
of advantages over the use of chromosomes, high 
resolution and dynamic range, improved reproduc-
ibility, direct mapping of changes to the genome 
sequence and increase throughput by allowing 
automation.

In principle, every part of the genome is covered 
in classical CGH. However, it is estimated that 
amplicons need to cover many million basepairs to 
be detected, although it is likely that shorter ampli-
cons may be detected if highly amplified. Whereas 
both cDNA and oligonucleotide arrays may be 
used, the short probes suffer from weak signals 
and thus reduced reproducibility, so many groups 
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use genomic arrays for this purpose. The probes on 
these arrays consist of cloned chromosomal frag-
ments, usually bacterial artificial chromosomes 
(BACs) or P1 artificial chromosomes (PACs) of 
100–300 kilobases. Large inserts provide suf-
ficient intense signals so that accurate measure-
ments can be obtained over a broad dynamic range.  
BACs and PACs are more demanding to produce 
than cDNA probes, and thus complete coverage 
genomic arrays have not yet been published. Initial 
reports of genomic arrays used whole BACs and 
PACs isolated from large scale cultures, since then, 
different methods have been described to create 
representations of genomic clones by ligation-
mediated PCR, or different types of degenerated 
oligonucleotide primed (DOP-)PCR.  A common 
design is to include one BAC every million base-
pairs, thus giving arrays of 3–4000 BACs (Figure 
2a) (Snijders et al. 2001, Fiegler et al. 2003). Some 
BAC sets are focused, i.e. include specific regions 
known to be involved in cancer, or may completely 
cover a specific region (Figure 2d), some are 
defined through cytogenetic mapping, and some 
are sequenced so that the gene content is precisely 
known (Figure 2c).

A major advantage of genomic profiling is the 
increased stability of DNA compared to RNA. 
The requirement for intact targets are less for the 
DNA-labelling protocols, sufficient quality can 
be obtained even from paraffin blocks, allow-
ing access to vast collections of archive material 
(although not if demineralized with acid, which 
destroys DNA and therefore EDTA may be used 
instead, Paris et al. 2003).

Classical DNA purification procedures involv-
ing organic extractions give relatively pure and 
intact genomic DNA for copy number analy-
sis. Typically less than 1 microgram of total 
genomic DNA is labelled directly with fluorescent 
nucleotides by random priming. Recently various 
reports have shown promising methods for whole 
genome amplification (Lage et al. 2003, Hosono 
et al. 2003). These methods can generate enough 
material from minute clinical samples, so that 
gene dosage alterations down to threefold can be 
reproducibly detected with as few as 1000 cells of 
starting material (Lage et al 2003).

For DNA copy number profiling a sex-matched 
normal diploid genome is used as reference, usu-

ally normal leukocytes. Recent work has also 
shown polymorphism in DNA copy number 
between individuals (Lucito et al. 2003). This poly-
morphism can involve segments as large as several 
megabases that may or may not be present in dif-
ferent individuals. It is therefore recommended to 
utilize a pool of normal DNA or normal DNA from 
the same patient in question as reference.

Bioinformatics 

The post-genomics era we currently experience, 
with thousands of candidate genes and proteins 
identified, requires well-developed bioinformatics 
systems in order to handle the vast amounts of 
data generated (Simon et al. 2003). A basic under-
standing of the bioinformatics involved at several 
stages is important when planning or interpreting 
microarray experiments. Below we describe pro-
cedures for analysis of spotted expression arrays. 
Some of the commercial arrays, like those of 
Affymetrix, are single channel assays, using dif-
ferent procedures for filtering and calibration, but 
down-stream analysis is more or less the same. For 
genomic arrays, the procedures are also different, 
in that normalization is done with normal DNA, 
and the target gives ratios above or below a fixed 
multiplum (reflecting non-diploid karyotypes) 
of the normal value, indicating deletion or gain. 
A complication there is to determine the correct 
normalization factor in samples with aneuploidy 
or numerous aberrations, where it might be dif-
ficult to identify reliably regions with normal copy 
number ratios. Another difference in this case is 
that the probes must be analyzed in their chromo-
somal positional context, and each spot represents 
a large genomic segment, in most cases contain-
ing multiple genes. Thus dedicated software is 
required for this purpose.

Gene definition

A basic problem in post genomics is annotation, 
which is the definition and unequivocal naming 
of each gene and its splice variants. This is get-
ting even more complicated as it turns out that the 
sequences of many human genes actually overlap. 
The Unigene system defined each tentatively 
unique gene as a collection (contig) of overlapping 
cDNA sequences, and gave each a unique Unigene 
cluster ID (Wheeler et al. 2003). For each of these 
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             a)

             b)

             c)

             d)

Figure 2. Examples from genomic profiling of a MPNST using arrayCGH. a) Genome-wide profile using an array 
with clones spaced at approximately 1Mb intervals. The CGH ratios for each BAC or PAC array element is 
plotted as a function of its genome location, with chromosome 1 to the left and Y to the right. Each ratio is the 
log mean of the quadruplicate array measurements. Vertical lines indicate chromosome boundaries. Plots were 
generated using M-CGH (Wang, Meza-Zepeda, Kresse and Myklebost, unpublished). b) Expanded view showing 
normalized copy number variation throughout chromosome 12. A white circle identifies a highly amplified 
sequence in 12p13, also indicated in a). c) Information linked to the corresponding genomic clone (white circle) 
found in Ensembl. The  arrowhead indicates the BAC at the peak of the amplicon in a and b, and the CCND2 
gene (coding for cyclin D2) is highlighted as the most likely gene driving the amplification. d) A region-specific 
array covering the tiling path between 1q21 and 1q25. This region shows well-defined amplicon (Meza-Zepeda 



40                                                                                                            Acta Orthop Scand (Suppl 311) 2004; 75 Acta Orthop Scand (Suppl 311) 2004; 75                                                                                                            41

clusters, an IMAGE cDNA clone was selected as 
representative for that putative gene, and included 
in the 40 k Unigene clone set widely used to make 
arrays. However, as new sequences are obtained, 
in many cases, two or more Unigene clusters were 
found to represent the same gene, particularly as a 
result of alternative splicing, but also because some 
cDNA clones were primed inside the gene rather 
than from the 3  ̓ end. Other clusters were split, 
because some cDNAs may have been artificially 
joined during cloning or erroneously aligned. 
Thus, the Unigene IDs may change over time, and 
the annotation of gene names for each spot, stably 
represented by its IMAGE ID, must be regularly 
updated. More recently, as the genome sequence 
became available, the gene IDs from the Ensembl 
database (ensembl.org) are being used to anno-
tate new probe sets. This has the advantage that 
each probe is directly connected to the genome 
sequence, and information about splice variants is 
to a large extent available. Furthermore, sequences 
shared between genes may be identified. However, 
it is complicated to compare results obtained with 
sets defined by these different means, and also 
those defined by commercial procedures (e.g. 
Affymetrix, Compugen).

Image analysis and data extraction

When performing microarray experiments, com-
puters are used at many steps. The array needs to 
be scanned, and the settings and properties of the 
scanner may have a major impact on the results. 
In particular, the background level, the linearity 
and to what extent some signals are above the 
saturation level is important. Each spot and the 
relevant background level needs to be reliably 
identified, and weak spots may be filtered away. 
Data from spotted arrays are represented as the 
ratio between signals from target and reference 
as described above. The reliability of the signals 
correlates with intensity, so that weak spots are 
less reliable, as one would expect, partly because 
the background, as measured on the surrounding 
surface not blocked by DNA, may poorly represent 
that within the spot. However, when the ratios have 
been calculated, information about signal intensi-
ties is lost, and in general weak signals will con-
tribute equally to downstream analysis. Thus, pro-
cedures for determination of the level of intensity 

that is regarded as reliable, and for handling such 
spots, are critical. With weak signals, experimental 
variation or modest differences in balance between 
the two channels (reference and target), may give 
large variation or even inversion of the ratios. If 
representative duplicate probes are present on the 
arrays, adaptive filtering may be implemented, that 
sets the filter at a level giving a defined level of 
reproducibility (Jenssen et al. 2001). Other pro-
cedures use the variation in background intensity 
or relate to its average level or some fixed value, 
and spots below this threshold in one or both of the 
channels are removed. However, one then looses 
information about transcripts that are absent in 
a target (but present in the reference), including 
deleted genes, as well as those being expressed in 
the target but absent in the reference. More com-
plex procedures may take care of this issue, e.g. by 
replacing negative or zero values of the reference 
with a low, fixed value, to stabilize the ratios.

Whereas aggressive filtering will improve the 
reproducibility of each experiment, it may also 
drastically reduce the information available when 
sets of probes are to be compared.

Data preparation for comparison

To compare experiments, the ratios need to be nor-
malized. This is usually done by setting the total 
intensity in each channel, or the sum of intensities 
of a set of “house hold” genes, equal, assuming 
the total level of expression is the same for both 
samples. This can be done by multiplying all 
intensities of one channel with the required factor, 
or, if the intensities are not expected to be linearly 
distributed, by intensity-based “Lowess” normal-
ization (Yang et al. 2002). In most cases, log2 ratios 
are used, so that 1 corresponds to double, and -1 
to half the expression level. Depending on what 
one wants to emphasize, one may remove genes 
which do not change much across a panel, which 
one is not interested in. Furthermore, to give equal 
emphasis to the remaining genes, disregarding 
the amplitude of changes, one may calibrate the 
variation across the panel for each gene, so that 
the mean is 0 (mean centering) and maximum in 
all cases is 1. Whereas duplicate probes for some 
genes may be a good internal control, they will 
affect e.g. clustering, and one may either only keep 
one, or calculate an average. It is difficult to ana-
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lyze genes that are absent (filtered away) in some 
of the samples, and one usually omits those absent 
in a certain fraction of the samples. As mentioned 
above, if a large fraction of the genes may be weak 
in one or more of the samples, perhaps because the 
sample labelled poorly, aggressive filtering may 
quickly remove a majority of the results in one or 
more samples. Procedures are available for impu-
tation of missing values, i.e. calculation of likely 
values based on those in the most similar samples 
to improve downstream analysis (Troyanska et al. 
2001).

The contribution of mRNA from stromal cells 
will affect the results, and thus the surrounding 
tissue will contribute to the tumor pattern (see 
example in the clinical applications section). To 
some extent these gene clusters can be removed in 
advance (Perou et al. 2001), focussing the analysis 
on the profile of the cancer cells. However, one 
may then lose information about stromal cells that 
may be important prognostically, e.g the degree of 
infiltration of immune cells (Wang et al. 2001).

Data mining in microarray studies

It is beyond the scope of this article to review the 
many ways data sets may be analyzed, and we refer 
to Quackenbush (2001) for further introductory 
reading. In tumor profiling, one generally aims 
to do two main types of analyses; class discovery, 
where one looks for entirely new class structures 
among the samples, or class prediction, where one 
tries to identify expression fingerprints that can 
determine to which predetermined class a sample 
belongs. This could be used e.g. for classification 
of problem cases into the classical histological 
classes, or for prediction of whether a sample will 
respond to chemotherapy. In many cases interest-
ing data are represented by a spread sheet-like dis-
play, in which each line represents the values for a 
gene (probe) in all the samples, and each column 
contains the values for all genes in one sample. To 
facilitate interpretation, the ratios are represented 
as colors, with increasing red intensity represent-
ing log ratios larger than 0, and green the negative, 
whereas ratios around zero are approaching black.

For class discovery, unsupervised methods are 
used, where the microarray data only are used to 
look for subclasses in the set. For this purpose, the 
way in which the filtering, centering and normal-

ization is done will have important impact. The 
most common procedure is hierarchical clustering 
(Figure 3, Eisen et al. 1998), by which, to put it 
simply, the sample columns and the gene lines are 
resorted, so that those that are most similar lie side 
by side. So nothing is changed in the data, just 
the samples and genes are grouped according to 
similarity. This will reveal some of the inherent 
structure in the data, but the result is dependent 
among other things on how similarity is defined, 
and the order by which the values are compared. 
A problem with hierarchical clustering is that each 
sample or gene can only be placed in one relation, 
whereas clearly there may be relations in several 
directions. Using other algorithms, such as self-
organizing maps and K means clustering, one may 
predefine the number of groups.

In supervised analysis, one uses other informa-
tion about the samples to guide the microarray 
analysis. The majority of the samples are generally 
included in a learning set to define a set of genes 
that correlates with the properties of predetermined 
groups. Subsequently, this classification is used to 
evaluate the rest of the samples, which make up 
the test set. It is important to understand that with 
thousands of measurements and perhaps hundreds 
of samples (most sarcoma studies are done with 
tens of samples or less), there will always be many 
genes that just by chance correlate completely with 
any way to divide the panel. Therefore, validation 
in separate and sufficiently large sample sets is 
mandatory.

One may also correlate gene expression patterns 
with survival, e.g. through a modified log rank test 
(Jensen et al. 2002). This will identify genes with 
expression patterns that correlate with survival.

Functional interpretation 

Besides classification and prediction purposes, 
microarray analyses yield detailed information 
on genes that are associated with each type of 
cancer or with its behaviour. These genes may 
reveal unknown processes involved in cancer 
development or progression, many of which may 
be diagnostically valuable or be developed as new 
candidate targets for therapy. However, the lists of 
genes are frequently quite hard to interpret, since 
many genes have multiple names (and indeed mul-
tiple functions), many of which do not give hints 
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Red > green: Overexpression

Red = green

Green > red : Underexpression

Not available

Gene 1

Gene 7

Gene 6

Gene 8

Gene 3

Samples 4   2   6   1   5   3
Fluorescence ratios

b)

a)

i)

ii)

iii)

iv)

Hierarchical clustering of 3 synovial
sarcomas and 6 MFH

Figure 3. Hierarchical cluster analysis of expression data. a) Example showing how the rows of patient samples, 
and the lines of gene values, are sorted so that those with the most similar expression profile are beside each 
other. The length of the tree-like ”dendrograms”, showing how the various samples and clusters are related to 
each other, indicate the relative similarity. Red indicates signal from target (tumor) and green from reference. b) 
Real example of expression data, showing comparison of expression profiles of a group of 3 synovial sarcomas 
and 6 MFH. i) shows the unsupervised clustering of the samples based on all available expression data (5300 
values remaining after removing weak spots etc.). The dendrogram shows separate clusters for each subtype, 
and indicates some subgroups within the MFH. ii) and iii) are clusters of genes with similar expression profile 
among the samples, that may be used to distinguish the two groups. ii) genes that are highly expressed in 
synovial and low in MFH samples, and iii) vice versa. iv) shows genes that are expressed in a subgroup within the 
MFHs, as responsible for a subcluster within this group, as indicated by the separate branches in i).  The color 
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of their function, and still a majority of genes have 
no name at all. To interpret the results, clustering 
analysis may give hints on function because the 
genes behave similarly (cluster with) other genes 
of known function, thus some regulatory or func-
tional relationship may be inferred. Furthermore, 
data mining tools that scour the literature or other 
databases for information on each gene can be 
used (e.g. PubGene.org, Jenssen et al. 2001). Sev-
eral efforts are ongoing to annotate all genes with 
functional information, such as the Gene Ontology 
Consortium (GeneOntology.org), and these can be 
used to interpret the functions of a set of candidate 
genes.

Clinical applications of expression profiling in 
cancer

Gene expression profiling has revealed novel 
classification patterns in several tumor types, 
including STS, breast cancer, lymphoma, malig-
nant melanoma, and acute myeloid leukemia 
(Golub et al. 1999, Alizadeh et al. 2000, Bittner 
et al. 2000, Perou et al. 2000 Sorlie et al. 2001), 
but application of molecular diagnosis has been 
tested in only a few large sample sets with most 
tumors being of epithelial origin. Ramaswamy et 
al. (2001) applied 16K oligonucleotide arrays to 
218 malignant solid tumors of 14 types to study 
whether gene expression patterns could be used 
to predict tumor origin. An expression-based 
classifier was developed and had an overall diag-
nostic accuracy of 78%. The lowest accuracy was 
observed for poorly differentiated cancers, which 
represent anaplastic lesions that due to lack of 
morphological hallmarks may be hard to diagnose 
also based on morphology. Many of the anaplastic 
tumors probably display expression profiles quite 
different from those of their original tumor type. 
Furthermore, multi-class distinction between 
related tumor types may provide a greater chal-
lenge than pair-wise comparison between tumor 
types. Giordano et al. (2001) used 7K oligonucle-
otide arrays to compare the gene expression pat-
terns in adenocarcinomas from the lung, colon, 
and the ovary. A correct classification with regard 
to organ specificity was achieved in 91% of the 
tumors. Interestingly, the two discordant tumors, 
one colonic tumor and one ovarian tumor, proved 
to represent a metastatic colonic adenocarcinoma 

in the ovary (which clustered closer to the ovarian 
group) and a pleomorphic mesenchymal tumor. 
The differentially expressed genes identified 
in such studies have a great potential to prove 
diagnostically useful, and these data constitute an 
important step towards the identification of organ-
specific expression profiles.

The studies by Ramaswamy et al. (2002) and 
Giordano et al. (2001) demonstrated that gene 
expression profiling can be applied to tumors of 
unknown origin in order to denote the primary 
tumor type. Despite the advances in differential 
diagnosis using gene expression data, such appli-
cations do not constitute the major diagnostic 
aim, which will probably rather be the possibility 
to distinguish yet not identified tumor subtypes. 
Thereby, these technologies will serve as comple-
mentary analyses for diagnosis, and will also 
provide data on prognosis and form the basis for 
the development of novel therapeutic strategies. 
Molecular profiling may also shed light on the cel-
lular origin of tumors and could thereby provide a 
better understanding of the precursor cells and on 
tumor pathogenesis.

Expression profiling in STS

The morphologic classification of STS is complex, 
has repeatedly been modified with novel clinico-
pathological entities being recognized, and now 
includes more than 50 histotypes. However, the 
morphologic classification is rather robust and 
when novel technologies, such as immunohisto-
chemistry, cytogenetics, and RT-PCR have been 
introduced and compared with the morphological 
classification, these generally support and thereby 
validate the morphologic classification. However, 
even within the currently identified histopathologic 
subtypes, an extensive variability in morphology 
and clinical behaviour exists. Since 1/3 of the 
patients develop metastases and STS are poorly 
chemosensitive, novel prognostic factors and 
therapeutic possibilities are needed. The introduc-
tion of imatinib (known as Gleevec or STI571), an 
inhibitor of the KIT receptor tyrosine kinase, in 
the treatment of GIST is one of the best examples 
of the efficiency of targeted therapies. The story 
behind imatinib and the clinical responses obtained 
suggests that detailed molecular characterization 
of other types of STS may be of importance for 
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the development of targeted therapies. The intro-
duction of expression arrays provides an exciting 
opportunity to identify such molecular targets for 
targeted therapies also in other types of STS.

Tumor heterogeneity

Since STS are often large with heterogeneous mor-
phology, concern has been raised as to whether a 
random sample from a STS can provide accurate 
gene expression data that are representative of the 
entire tumor. These issues have been addressed by 
studies of multiple tumor biopsies from leiomyo-
sarcomas and MFHs, which have been compared 
with the gene expression patterns determined from 
single tumor samples from the same histopatho-
logic type of tumor. These studies have shown that 
the intra-tumor variability of the gene expression 
profiles in STS are within the variability of repli-
cate experiments from the same tumor piece and 
that the variations are minimal compared to the 
inter-tumor variability (Shmulevich et al. 2002, 
Francis, unpublished observations). These findings 
indicate that, unless clear tumor heterogeneity is 
observed, an accurate molecular profiling can be 
obtained from single samples from STS, and that 
tumor size will not have a major effect on the data 
obtained. However, the expression levels may vary 
between the center and the periphery of the tumor 
for certain genes; overexpression of the PDGF 
receptor has been found to be more pronounced 
in the tumor periphery, whereas lysozyme and 
cathepsin E showed reduced expression in the 
tumor periphery (Shmulevich et al. 2002).

Expression-based subclassification of STS

The first studies applying gene expression arrays 
to STS have now been reported and these data do 
in general support the traditional, morphologic 
classification. Nielsen et al. (2002) used 22K and 
42K cDNA microarrays to analyze a heteroge-
neous group of 41 STS, including GIST, synovial 
sarcomas, liposarcomas, leiomyosarcomas, MFHs 
and malignant peripheral nerve sheath tumors 
(MPNST, schwannomas). Based on unsupervised 
clustering of differential expression of some 
5,500 genes, 5 major clusters were identified and 
included synovial sarcomas, GISTs, MPNSTs, a 
cluster containing a subset of the leiomyosarco-
mas, and a cluster containing heterogeneous tumor 

types such as liposarcomas, MFHs, and some of 
the leiomyosarcomas. When histopathological data 
was introduced to perform a supervised clustering 
analysis, differentially expressed transcripts that 
correlated with these groups could be identified. 
Class prediction for GIST tumors involved 125 
genes, including KIT, synovial sarcomas were 
recognized by a 104-gene cluster containing e.g. 
SSX, EGFR, and genes involved in the retinoic 
acid pathway, leiomyosarcomas were associ-
ated with muscle-related genes and the MPNSTs 
showed expression of nerve sheath-related genes 
(Nielsen et al. 2002). Segal et al. (2003) also used 
12K Affymetrix arrays to test whether gene expres-
sion profiling could identify novel classification 
schemes. In a sample set containing 51 STS, syno-
vial sarcomas, myxoid/round cell liposarcomas, 
clear-cell sarcomas, and GISTs showed distinct 
expression profiles. The discriminating genes 
within this study included SCF and KIT for GIST, 
WNT5A and FRIZZLED-1 for synovial sarcoma, 
genes associated with the melanocytic lineage 
in clear-cell sarcomas, and CDK4 and MDM2 in 
dedifferentiated liposarcomas (Segal et al. 2002). 
In this study some of the fibrosarcomas clustered 
closely to the synovial sarcoma, which may reflect 
a common origin for some of these tumors. The 
homogenous expression profiles of GISTs have 
also been demonstrated by Allander et al. (2001) 
with 13K cDNA microarrays. The KIT gene was 
indeed the most highly expressed gene and also 
had a top-ranking in the discriminator gene list, 
which suggests that the GISTs develop as a clonal 
expansion of cells that have acquired a KIT muta-
tion and that these tumors are not affected by the 
extensive genetic instability that characterize many 
carcinomas as well as a subset of STS.

Synovial sarcomas show, among several histo-
logical features, signs of epithelial differentiation, 
and on the basis of such components the tumors 
are classified into the two major subtypes; biphasic 
(composed of epithelial cells arranged in glandu-
lar-like structures and spindle cells) and mono-
phasic (composed of fibrosarcoma-like spindle 
cells, possibly with scattered epithelioid areas). 
The synovial sarcomas are characterized by the 
X;18-translocation, which results in the SYT-SSX 
fusion gene (Clark et al. 1994). Indeed, two major, 
alternative fusions exist with the SSX1 or the SSX2 
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genes, and that SSX1 fusions correlate with the 
biphasic histotype and SSX2 with the monopha-
sic type. The fusion proteins have transcriptional 
activity, and although their normal downstream tar-
gets are unknown, it is likely that their levels, and 
perhaps those of additional genes, will be affected 
by the aberrant transcription factors. This obser-
vation strongly indicates that different precursor 
cells for the two major types of synovial sarcomas 
exist, and these tumors are thought to arise from 
a mesenchymal stem cell with a capacity for epi-
thelial differentiation. Nagayama et al. (2002) used 
23K cDNA micorarrays and demonstrated that 
synovial sarcomas cluster separately compared to 
other types of STS, and in the hierarchical cluster 
analysis the synovial sarcomas clustered close to 
malignant peripheral nerve sheath tumors. Genes 
related to migration or differentiation of neural 
crest cells, e.g. coding for ephrin-B3, endothelin-
3, retinoic acid receptor and collagen IX, showed 
frequent up-regulation, which raises the possibil-
ity of a connection between synovial sarcoma 
and neuroectodermal differentiation. Allander 
et al. (2002) used 6K cDNA microarrays and 
examined the expression profiles in 14 synovial 
sarcomas compared to MFHs and fibrosarcomas. 
Up-regulation was identified for e.g. IGF2, which 
acts through the IGF1 receptor, and of the negative 
regulators IGF1, IGFBP2, and ERBB2. Regard-
ing morphology, biphasic tumors tend to cluster 
together, whereas monophasic tumors seem to be 
divided into separate clusters and keratin-encoding 
genes are among the genes that distinguish these 
subsets of synovial sarcomas (Allander et al. 2002, 
Nagayama et al. 2002, Fernebro et al., unpublished 
data).

Fritz et al. (2002) performed expression profil-
ing as well as microarray-based CGH in pleomor-
phic, dedifferentiated liposarcomas. The genomic 
profiling detected the highest amplification levels 
in dedifferentiated liposarcomas for the genes 
MDM2, GLI and CDK4, and served as class pre-
dictors for dedifferentiated liposarcoma. All these 
genes are localized to 12q13-15, which indicates 
a close relationship between the dedifferentiated 
liposarcomas and well-differentiated liposarcomas, 
in which amplification of this segment is closely 
associated with the typical marker chromosomes. 
Clustering based on the expression levels of 1,600 

genes allowed most of the tumors to be separated 
into pleomorphic or dedifferentiated liposarcomas, 
with the heat shock protein HSP90 and the adaptor 
protein gene SCAP showing higher expression in 
the pleomorphic liposarcomas. Also these data are 
in agreement with the notion that 1q22, to which 
band these genes are localized, is amplified in 
pleomorphic liposarcomas (Rieker et al. 2002).

Expression profiling may have its greatest 
potential for clinical use to distinguish between the 
pleomorphic and undifferentiated types of several 
common types of STS, e.g. high-grade malignant 
leiomyosarcomas, pleomorphic liposarcomas, and 
MFHs, where a novel expression-based tumor 
classification may offer a more objective and 
reproducible classification. Consequently, iden-
tification and further investigation of subgroups 
among the currently identified histotypes is the 
focus of most of the currently performed studies 
that apply DNA arrays to STS. Ren et al. (2003) 
applied Affymetrix arrays with 22K probes to ana-
lyze 35 STS. Two clusters were identified based on 
the expression of 92 genes and ESTs, and the gene 
expression profiles in these two groups were found 
to correlate with tumor differentiation and clinical 
aggressiveness. Three genes that showed frequent 
up-regulation, p16, a7-integrin, and neurotrophin, 
were further evaluated using RT-PCR, which con-
firmed frequent up-regulation of p16. This report 
thus indicates that expression profiling can subclas-
sify leiomyosarcomas. The results also suggest that 
expression profiling can predict tumor behaviour 
and may thus be of clinical use in decisions about 
adjuvant therapies. The more pleomorphic tumor 
types, including MFH, are characterized by com-
plex genetic alterations and less consistent expres-
sion profiles. Whereas MFHs have in some studies 
failed to form a separate cluster, a subset of these 
tumors have in other studies clustered separately 
(Nagayama et al. 2002, Nielsen et al. 2002, Segal 
et al. 2002, Ren et al. 2003). The identification of a 
subset of MFHs with a particular expression profile 
could be of diagnostic value and might also have 
prognostic applications.

Subclassification of pediatric solid tumors may 
be challenging. Kahn et al. (2001) applied 6K 
cDNA microarrays to train artificial neural net-
works (ANNs) in the classification of small round 
blue-cell tumors, including Ewing sarcomas, 
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rhabdomyosarcomas, neuroblastomas, and Burkitt 
lymphomas. Using the top-96 genes, the authors 
could train the artificial network to correctly clus-
ter the tumors within their diagnostic categories. 
Wai et al. (2002) applied 2K Affymetrix arrays to 
distinguish cell lines derived from Ewing sarco-
mas, neuroblastomas, and malignant melanomas 
of soft parts, and did among other findings iden-
tify overexpression of WNT-signaling pathway in 
neuroblastoma. Kahn et al. (1998) also reported 
consistent gene expression patterns in alveolar 
rhabdomyosarcomas and demonstrated that genes 
related to the PAX3-FKHR fusion were among the 
most consistently expressed.

Genomic profiling of sarcomas

ArrayCGH can detect deletions, duplications, non-
reciprocal translocations and gene amplification, 
phenomena frequently seen in STS. Analysis of 
tumor genomes by arrayCGH has focused mainly 
on genome-wide arrays (Figure 2a) or on particu-
lar regions of the genome where aberrations fre-
quently occur (Figure 2d).

Unlike most epithelial tumors, STS can be 
defined by their molecular pathology. From a 
genetic perspective sarcomas can be classified into 
two main groups, tumors with relatively simple 
near-diploid karyotypes and few, rather specific, 
chromosomal rearrangements, and a second group 
of tumors with complex karyotypes, characterised 
by severe genomic and chromosomal instability. 
The first group of tumors generates distinct and 
homogeneous expression profiles. In the second 
group, specific profiles of copy number changes 
seem to appear as a result of a selection for par-
ticular changes affecting gene expression and 
genetic instability. In several small studies, copy 
number fingerprints have been used for classifica-
tion (Fritz et al. 2002, Weiss et al. 2003, Wilhelm 
et al. 2003).

Relative small number of sarcoma samples have 
been analysed by array-based CGH. 16 dedifferen-
tiated and pleomorphic sarcomas have been profiled 
using a 300 element genomic array, half of them 
localised to 12q (Fritz et al. 2002). Several class 
predictors were identified based on particular genes 
located in the chromosomal subregion 12q13-q15. 
This region, frequently amplified in well-differenti-
ated liposarcomas, was over-represented in all the 

dedifferentiated but not in the pleomorphic liposar-
comas. Within the 12q amplicon, MDM2, GLI and 
CDK4 were coamplified. Other candidate genes 
from this region were also over-expressed, indicat-
ing a possible role in liposarcoma development. 
Two other chromosomal regions, 6q25 and 20q13, 
were also frequently increased in copy number. 
More recently, pediatric osteosarcomas were 
analysed using cDNA microarrays (Squire 2003). 
DNA from 9 samples were hybridized to a 19200-
clone cDNA microarray, and copy number gains 
or amplification were found in 6p, 8q and 17p, all 
consistent with the pattern observed by metaphase 
CGH. The higher resolution of arrayCGH, on the 
other hand, allowed definition of amplicon bound-
aries for the 17p amplicon. Taking advantage of the 
increased resolution of arrayCGH, a more precise 
map of amplicon boundaries and maxima can be 
identified. Precise mapping of these regions to the 
genome sequence aids the identification of candi-
date oncogenes. Expression levels of the candidate 
genes in tumor panels and cell lines can be used to 
identify the most likely gene that drives the amplifi-
cation and contributes to the oncogenic phenotype. 
The genes identified may give light into tumorigen-
esis, as well as possible targets for new therapies.

Summary and future perspectives

In summary, the current although limited data from 
expression profiling in STS indicate that distinct 
expression profiles exist for several subtypes of 
STS. These especially include tumors that are 
characterized by specific chromosomal transloca-
tions (e.g. synovial sarcoma and Ewing sarcoma) 
or oncogene mutation (e.g. GISTs containing 
mutations in the KIT gene). The more pleomorphic 
tumors that are also generally characterized by 
complex genetic alterations show less consistent 
expression profiles, although subsets of these 
tumors with distinct expression profiles can be 
identified (Nielsen et al. 2002). Furthermore, sev-
eral genes and pathways suggested to be involved 
in the different subtypes of STSs, such as KIT in 
GIST and the wnt-pathway in synovial sarcoma 
have been found to be over-expressed and to con-
tribute to the subclassification obtained.

However, the first studies available have been 
performed during the earliest phase of expres-
sion arrays and therefore differ considerably in 
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basic layout; different technological platforms 
(cDNA microarrays, oligonucleotide arrays, and 
CGH arrays) have been used, a variable number 
of genes and/or ESTs have been analyzed, various 
references RNA has been utilized, and different 
statistical methods have been used to handle the 
data obtained. Therefore, it is expected rather 
than surprising that various classifying gene lists 
have been suggested, and many of the genes that 
contribute to the classifications have not yet been 
characterized. The minimal set of genes that can 
correctly classify samples into their diagnostic cat-
egories depends on the number of genes included 
in the array, the size of the tumor material studied 
and probably also on the tumor type.

The current lessons from gene expression stud-
ies in STS are encouraging and suggest that these 
methods may be used as adjunct techniques in 
future differential diagnosis of STS and that clas-
sification systems based on gene expression levels 
may be feasible in STS. However, much work 
remains to be done in order to confirm and vali-
date the very first results from expression profiling 
studies presented herein, and it will be critical for 
further development that larger collaborative, but 
consistently diagnosed and treated tumor panels 
are studied. Also, functional evidence and charac-
terization of the pathways involved will be required 
before these new data can be introduced in clinical 
decision-making. However, novel technologies are 
available also for data evaluation; integrated infor-
mation about a specific target based on studies at 
DNA level, the RNA level and the protein level can 
be obtained, the results can be validated in model 
systems, over-expressed clones can be tested in 
representative cohorts using the tissue microarray 
technology (TMA), and finally the molecular data 
needs to be correlated with clinical, histopatho-
logical and prognostic data.

Now that the first data on up-regulated and 
down-regulated genes in STS are available, this 
knowledge is likely to influence future studies in 
this field since different investigators can mine data 
published on the web and test candidates in inde-
pendent tumor materials. Thereby, the gene arrays 
have a great potential to reveal the biology and the 
pathogenesis behind STS with important conse-
quences for diagnosis as well as for prognosis and 
therapeutics and it is with great interest that genetic 

signatures for local recurrences and/or metastases 
as well as expression data related to therapeutic 
response in STS are foreseen.
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