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High-grade osteosarcoma is a tumor with a complex genomic profile, occurring primarily in adolescents with a second peak

at middle age. The extensive genomic alterations obscure the identification of genes driving tumorigenesis during osteosar-

coma development. To identify such driver genes, we integrated DNA copy number profiles (Affymetrix SNP 6.0) of 32 diag-

nostic biopsies with 84 expression profiles (Illumina Human-6 v2.0) of high-grade osteosarcoma as compared with its

putative progenitor cells, i.e., mesenchymal stem cells (n ¼ 12) or osteoblasts (n ¼ 3). In addition, we performed paired anal-

yses between copy number and expression profiles of a subset of 29 patients for which both DNA and mRNA profiles were

available. Integrative analyses were performed in Nexus Copy Number software and statistical language R. Paired analyses

were performed on all probes detecting significantly differentially expressed genes in corresponding LIMMA analyses. For

both nonpaired and paired analyses, copy number aberration frequency was set to >35%. Nonpaired and paired integrative

analyses resulted in 45 and 101 genes, respectively, which were present in both analyses using different control sets. Paired

analyses detected >90% of all genes found with the corresponding nonpaired analyses. Remarkably, approximately twice as

many genes as found in the corresponding nonpaired analyses were detected. Affected genes were intersected with differen-

tially expressed genes in osteosarcoma cell lines, resulting in 31 new osteosarcoma driver genes. Cell division related genes,

such as MCM4 and LATS2, were overrepresented and genomic instability was predictive for metastasis-free survival, suggesting

that deregulation of the cell cycle is a driver of osteosarcomagenesis. VVC 2012 Wiley Periodicals, Inc.

INTRODUCTION

High-grade osteosarcoma is an aggressive pri-

mary bone tumor, which mostly occurs during

adolescence, with a second peak at middle age,

at the metaphysis of long bones. The tumor is

characterized by aberrant production of osteoid

matrix and by very complex karyotypes (Ray-

mond et al., 2002; Cleton-Jansen et al., 2005).

Since the introduction of DNA microarray tech-

nology, recurrent DNA copy number changes in

human osteosarcoma tumor tissues have been

identified by comparative genomic hybridization

(CGH) and high-density single nucleotide poly-

morphisms (SNP) microarray analysis. There is a

general consensus about gain of chromosome

arms 6p, 8q, and 17p, but many additional regions

are reported as well (Squire et al., 2003; Man

et al., 2004; Atiye et al., 2005; Yen et al., 2009;

Kresse et al., 2010). The effects of copy number

alterations may be reflected by changes in expres-

sion of genes in the affected chromosomal

regions. There are various publications on human

osteosarcoma gene expression, but few show ro-

bust bioinformatics (as described by Kuijjer et al.,
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2011). Often, small sample sizes and heterogene-

ity within groups result in only a small number of

significant genes, on which usually no correction

for multiple testing is applied. Another problem

when studying osteosarcoma gene expression data

is the lack of an osteosarcoma benign precursor

lesion and its debated cell of origin—although it

becomes clearer that the mesenchymal stem cell

or its derivative is the progenitor of osteosarcoma

(Mohseny et al., 2009; Mohseny and Hogendoorn,

2011). The disease seems to develop suddenly as

a full-blown tumor, rendering it difficult to detect

early drivers of osteosarcomagenesis. We have

previously determined differential expression

related to specific clinical parameters (Buddingh

et al., 2011; Kuijjer et al., 2011). In addition, we

have compared osteosarcoma with osteoblas-

toma—a benign tumor which develops at the

same site as osteosarcoma, but which does not

progress into the latter. This comparison of

human osteosarcoma with a control tissue showed

that cell cycle regulation is the most significantly

altered pathway in osteosarcoma (Cleton-Jansen

et al., 2009).

There are advantages of integrating copy num-

ber and expression data when aiming to identify

driver genes. First, copy number data analysis of

tumors with complex genomic profiles may return

numerous bystander or hitch-hiker genes, as copy

number alterations may occur not only because

they are advantageous for the tumor but also as a

result of general genomic instability. Regions of

copy number alteration may therefore encompass

no driver gene at all, or may include additional

genes. Also, some genes with altered copy num-

bers may not be expressed in the tumor due to

tissue-specific expression. These aspects hamper

the identification of drivers of tumorigenesis,

especially when the number of recurrent genes in

such tumors is high. Second, at the mRNA level,

drivers affect downstream genes and switch on

feedback mechanisms, again rendering it difficult

to determine the real osteosarcoma drivers in a

pool of differentially expressed genes (Lee et al.,

2008). Integration of DNA copy number and

gene expression data filters out at least part of

such bystanders and of genes that act down-

stream of drivers of tumorigenesis, because most

of these genes have altered copy numbers, but no

change in expression, or vice versa, while drivers

are both amplified and upregulated, or deleted

and downregulated. Particularly osteosarcoma is

genetically extremely instable and therefore

genomic data analysis of this tumor type would

benefit from an approach that distinguishes driver

genes from the numerous more random genetic

events.

Nonpaired integrative analysis may be per-

formed by determining recurrent regions of copy

number alterations which have higher than

expected numbers of differentially expressed

genes. Paired integrative analysis is a more power-

ful method, because the relationship between copy

number alterations and gene expression can be

inferred in each specific sample, instead of being

based on averaged quantities. A statistically correct

method for paired integrative analysis of these dif-

ferent data types has not yet been defined. Paired

integrative analysis is usually performed by select-

ing genes based on the correlation between gene

expression and copy number levels, such as is per-

formed by the recently published methods DR-In-

tegrator (Salari et al., 2010) and Regularized dual

Canonical Correlation Analysis (Soneson et al.,

2010). However, gains and losses may not necessar-

ily directly translate to the same quantity of change

in expression levels (Lee et al., 2008), and impor-

tant genes may be overlooked this way. A method

where paired integrative analysis is detected for

specific chromosomal regions with altered genomic

and transcriptional status does exist (Bicciato et al.,

2009), but this method is not optimal for tumors

such as osteosarcoma with highly unstable

genomes, since copy number values are normalized

to the mean copy number over each array, and this

mean value may be altered in such tumors. Two

methods, PARADIGM and CNAmet, combine dif-

ferent types of data on a gene-based level. In

PARADIGM, integration of different data types is

used to detect patient-specific pathway activities

(Vaske et al., 2010). CNAmet returns genes that

show differential expression between samples with

and without methylation and/or copy number

alteration (Louhimo and Hautaniemi, 2011). This

elegant approach may however hamper the identi-

fication of genes that are regulated by other fre-

quently altered genes, such as TP53 and MDM2 in

osteosarcoma.

Aiming to identify osteosarcoma driver genes,

we performed both nonpaired and paired integra-

tive analyses on high-grade osteosarcoma preche-

motherapy biopsy data. We combined results

from analyses as compared with different control

sets—mesenchymal stem cells (MSCs) and osteo-

blasts, so that we did not exclude one of these

proposed progenitors as the cell of origin of os-

teosarcoma. We show that the paired integrative

analysis returns more affected genes than the
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nonpaired integrative analysis. There is an over-

representation of genes involved in genomic sta-

bility in osteosarcoma samples. The identified

genes may be important drivers in

osteosarcomagenesis.

MATERIALS AND METHODS

Ethics Statement

All biological material was handled in a coded

fashion. Ethical guidelines of the individual Euro-

pean partner institutions were followed and sam-

ples and clinical data were handled in a coded

fashion and stored in the EuroBoNeT biobank.

Patient Material and Cell Lines

Genome-wide expression profiling was per-

formed on pretreatment diagnostic biopsies of 84

resectable high-grade osteosarcoma patients from

the EuroBoNeT consortium (www.eurobonet.eu).

Clinicopathological details of these samples can

be found in Table 1. Human bone-marrow-

derived MSCs were obtained from five osteosar-

coma patients and seven healthy donors. Osteo-

blasts (n ¼ 3) were derived from MSCs on

osteogenic differentiation. MSCs and osteoblasts

were characterized and handled as described

(Cleton-Jansen et al., 2009). Copy number analy-

sis was performed on 32 pretreatment diagnostic

biopsies, of which 29 overlapped with the 84

samples used for expression analysis.

Copy Number Microarray Data Analysis

Affymetrix Genome-Wide Human SNP 6.0

arrays (Affymetrix, Santa Clara, CA) were used

for SNP data analysis. Genomic DNA prepara-

tion, labeling, hybridization, and scanning were

performed as described by Kresse et al. (2010).

Microarray data preprocessing was performed as

described previously (Pansuriya et al., 2011).

Hybridization quality was estimated by the geno-

type call rate using the Birdseed genotype calling

algorithm in Genotyping Console (version 4.0,

Affymetrix). Samples of poor quality were

excluded from further analyses. We performed

copy number analysis in Nexus software version

5 (Biodiscovery, El Segundo, CA) using CNCHP

log-ratio files generated by Genotyping Console

using 27 controls as a baseline, which is a subset

of the reference set of 29 samples which was

used by Pansuriya et al., 2011. We rejected two

samples based on results from the quality control

analysis in Genotyping Console. Hidden Markov

model- (HMM-) based SNP-FASST segmenta-

tion was used to identify aberrant genomic

regions. To be included as frequently aberrant, a

copy number alteration was called when detected

in at least 35% of all cases. Correlation of copy

number alterations with clinical data was per-

formed in Nexus software, with correction for

multiple testing.

Genome-Wide Gene Expression Microarray Data

Analysis

Osteosarcoma tissue handling, RNA isolation,

synthesis of cDNA, cRNA amplification, hybrid-

ization of cRNA onto the Illumina Human-6 v2.0

Expression BeadChips (Illumina, San Diego,

CA), and microarray data processing and quality

control in the statistical language R version 2.10

(R Development Core Team, 2005) were per-

formed as described previously (Buddingh et al.,

2011). High correlations between these micro-

array data and corresponding qPCR results have

been demonstrated previously (Buddingh et al.,

TABLE 1. Clinicopathological Details

Category
Patient

characteristics
Number of
biopsies (%)

Institution LUMC, Netherlands 36 (42.9)
IOR, Italy 12 (14.3)

LOH, Sweden 3 (3.6)
Radiumhospitalet,

Norway
1 (1.2)

WWUM, Germany 32 (38.1)
Location primary tumor Femur 40 (47.6)

Tibia/Fibula 28 (33.3)
Humerus 11 (13.1)

Axial skeleton 1 (1.2)
Unknown/other 4 (4.8)

Histological subtype Osteoblastic 52 (61.9)
Chondroblastic 9 (10.7)
Fibroblastic 7 (8.3)
Telangiectatic 4 (4.8)
Minor subtype 11 (13.1)
Unknown 1 (1.2)

Huvos grade 1 or 2 38 (45.2)
3 or 4 33 (39.3)

Unknown/NA 14 (16.7)
Metastasis at diagnosis Yes 14 (16.7)

No 69 (82.1)
Unknown 1 (1.2)

Sex Male 54 (64.3)
Female 29 (34.5)

Unknown 1 (1.2)
Age <20 years 64 (76.2)

>¼20 years 19 (22.6)
Unknown 1 (1.2)
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2011). Unsupervised hierarchical cluster analysis

was performed using R package pvclust with

default settings (Suzuki and Shimodaira, 2006).

Data Deposition

MIAME-compliant copy number and gene

expression data have been deposited in the GEO

database (www.ncbi.nlm.nih.gov/geo/, superseries

accession number GSE33383).

Detection of Significantly Differentially Expressed

Genes

We performed a factorial LIMMA analysis (Smyth,

2004) in order to determine differential expression

between high-grade osteosarcoma samples (n ¼ 84)

and control tissues—MSCs (n ¼ 12) and osteoblasts

(n ¼ 3). Also, gene expression differences between

MSCs and osteoblasts were determined. We used a

Benjamini and Hochberg False Discovery Rate

(FDR) of 0.05 as cut-off for significance.

Nonpaired Integrative Analysis

Nonpaired integrative analysis was performed

by importing lists of differentially expressed

genes into the Copy Number module of Nexus

software version 5. Based on the length of the

gene list, Nexus software performs a Fisher’s

exact test in order to determine whether the

number of differentially expressed genes in a

specific region with a significant copy number

alteration is larger than expected by chance.

Genes present in such regions of copy number

alteration with FDR-adjusted P-values (Q-bounds

in Nexus software) < 0.05 were returned from

this integrative analysis. We did not apply any

restrictions on the size of copy number aberra-

tions. A few small altered regions that did not

encompass an entire gene were detected, but

these regions did not return genes upon integra-

tion with expression data. Nexus software only

reports genes which are both gained and overex-

pressed, or both deleted and downregulated.

Paired Integrative Analysis

For the paired integrative analysis, copy num-

ber data of all autosomal overlapping genes

between the copy number and gene expression

data were exported from Nexus software, and

converted into a binary matrix containing all

genes with a gain (1) and no gain (0), and a simi-

lar binary matrix for losses. As in the nonpaired

integrative analysis, we did not apply any restric-

tions on the size of copy number alterations.

Gene expression data of each probe for each sam-

ple were normalized against average gene expres-

sion values of the corresponding probes over all

control samples (either expression data from 12

MSCs or from three osteoblasts)—this was per-

formed by subtracting the average expression of

the control samples from the expression levels of

the sample of interest, since these are log-trans-

formed expression values. For both analyses, only

genes that were significantly differentially

expressed between the 84 osteosarcoma samples

and the specific control set were analyzed, in

order to make sure that all genes returned from

the integrative analysis were significantly differ-

entially expressed. Subsequently, genes that over-

lapped between the copy number binary matrices

and that matched the fold change of expression

(upregulation for genes with gains, and downreg-

ulation for genes with losses) were returned as

two-way contingency tables using scripts in R.

Genes that were altered in two types of data

were further filtered by applying the sample re-

currence criterion of 35%. This generated lists of

recurrent two-way altered genes. The odds ratios

for having both copy number and expression

changes were calculated for different combina-

tions, for instance gain and upregulation. We

used Bonferroni corrected Chi-square or Fisher’s

exact P-values <0.05 to determine significance.

Gene Set Enrichment

GO term enrichment was tested using Biocon-

ductor package topGO (Alexa et al., 2006). Lists

of significantly affected genes were compared

with all genes eligible for the analysis. GO terms

with Fisher’s exact P-values < 0.0001, as calcu-

lated by the weight01 algorithm from topGO, were
defined significant.

Genomic Instability Scores and Survival Analysis

We calculated genomic instability scores for 83

(out of the 84) osteosarcoma biopsies (for one sam-

ple no follow-up data were available) and all con-

trols, as well as for two normal bone samples

(obtained from cancer patients at the Norwegian

Radium Hospital), 20 osteosarcoma xenografts

(Kresse et al., unpublished data, and Kuijjer et al.,

2011), 19 osteosarcoma cell lines (Ottaviano et al.,

2010), and the HeLa cervical cancer cell line. For

calculation of the genomic instability scores, we
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refer to the article by Carter et al. (2006). In short,

this method calculates per sample per probe the

expression of that particular probe minus the

mean expression of that probe over all samples.

For each sample, the sum of these values for all

probes present in the genomic instability signature

is calculated. This value is then compared

between all samples and thus gives a relative mea-

sure of genomic instability. We used 24 genes of

the CIN25 signature, because for one gene no

probe was present on the Illumina v2.0 BeadChip.

For genes with multiple probes, we used the

probe that showed the highest variation in expres-

sion levels. We determined metastasis-free survival

using the Kaplan-Meier method and performed a

Logrank test for trend using GraphPad Software

(La Jolla, CA, www.graphpad.com).

RESULTS

Recurrent Chromosomal Regions with Copy

Number Aberrations in High-Grade

Osteosarcoma

Thirty two high-grade osteosarcoma prechemo-

therapy biopsies were hybridized to Affymetrix

SNP 6.0 arrays in order to determine recurrent

copy number alterations. In total, 67 regions with

recurrent alterations were detected, of which 35

regions had copy number gain, and 32 copy num-

ber loss (see Supporting Information Table 1).

Recurrent gains were present on chromosome

arms 1p, 1q, 4p, 5p, 6p, and 8q, and losses on

chromosome arms 1p, 1q, 2q, 3q, 6q, 7q, 8p, 10p,

10q, 12p, 13q, 15q, 16p, and 16q. A genome-wide

frequency plot of copy number alterations is

shown in Figure 1. No significant correlation was

detected for specific regions with copy number

alterations and clinical information (tested clinical

parameters are shown in Table 1).

Comparison of Osteoblasts and MSCs

Unsupervised hierarchical cluster analysis

resulted in separate clusters for biopsies and cell

lines. Within the cell line cluster, osteosarcoma

cell lines formed one subcluster, whereas MSCs

and osteoblasts formed a second subcluster (Sup-

porting Information Fig. 1). This indicates that

the control cell lines are more similar to one

another than to osteosarcoma cells. On the basis

of hierarchical clustering of gene expression data,

we cannot determine the cell of origin of osteo-

sarcoma. A total of 1,382 genes were differentially

expressed between osteoblasts and MSCs. GO

term enrichment resulted in seven significant GO

Figure 1. Genome-wide frequency plot of copy number alterations on chromosomes 1–22 in 32
high-grade osteosarcoma prechemotherapy biopsies. Left of the chromosomes, loss; right, gain. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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terms, which are represented in Supporting Infor-

mation Figure 2. In summary, GO term enrich-

ment showed differences in cellular structure,

proliferation, and apoptosis. Genes showing sig-

nificant differences between both control cell

types, however, can nonetheless be differentially

expressed between osteosarcoma samples and

both control cell types, thus can still be important

drivers of osteosarcomagenesis. We therefore set

out to select genes that showed differential

expression in osteosarcoma as compared with

both MSCs and osteoblasts.

Gene Expression Signature of High-Grade

Osteosarcoma

We detected 12,542 and 2,939 probes encoding

for genes that were significantly differentially

expressed between the 84 osteosarcoma biopsies

and MSCs and osteoblasts, respectively. MA

plots, showing log-intensity ratios and log-inten-

sity averages for both analyses, are depicted in

Supporting Information Figure 3. A total of 1,679

probes overlapped between both analyses, of

which 1,639 were either up- or downregulated in

both. GO term analysis on the genes represented

by these 1,639 probes showed an enrichment of

apoptosis and signal transduction genes. Antigen

processing and presentation, as well as angiogene-

sis were also over-represented (Supporting Infor-

mation Fig. 4).

Paired Integrative Analysis Is More Sensitive Than

Nonpaired Integrative Analysis

Nonpaired integrative analysis was performed

on data from 32 samples hybridized on SNP

arrays and from 84 samples hybridized on gene

expression arrays, whereas paired analysis was

performed on a subset of 29 samples for which

both SNP and expression data were available. In

total, 16,105 autosomal genes were represented

both on SNP and on gene expression arrays.

Nonpaired integrative analysis resulted in 253

significantly affected genes in osteosarcoma biop-

sies versus mesenchymal stem cells, whereas 71

genes were detected when osteoblasts were used

as a control. A total of 45 genes were identified

in both analyses versus MSCs and versus osteo-

blasts (Fig. 2). Of these 45 genes, 23 were also

detected in expression analyses of a panel of 19

osteosarcoma cell lines (Ottaviano et al., 2010)

versus MSCs and osteoblasts (Supporting Infor-

mation Fig. 5A). For the paired integrative analy-

ses, we determined whether the number of genes

with gain combined with overexpression and with

loss combined with downregulation was higher

than expected per sample, based on the numbers

of copy number alterations and gene expression

changes in the whole genome. This was true for

most samples, as depicted in Figure 3, where the

odds ratios and significance of data dependencies

are shown. Paired integrative analysis resulted in

445 and 138 genes when compared with MSCs

and osteoblasts, respectively. A total of 101 genes

overlapped between these different analyses (Fig.

2), and of this set, 31 genes were also detected in

the cell line expression data (Supporting Informa-

tion Fig. 5B, Table 2). Hence, paired analyses

detected >90% of all genes found with corre-

sponding nonpaired analyses. In addition, approx-

imately twice as many genes as found in the

corresponding nonpaired analyses were detected

(Fig. 2, Supporting Information Fig. 6). Note that

in the paired analysis fewer samples are included.

Thus, paired analysis gives more robust results

despite the lower sample size. Changing the

threshold of FDR-adjusted P-values in the non-

paired integrative analysis from 0.05 to 0.15 (data

not shown) did not alter this ratio.

Genomic Instability Genes Play a Role in

Osteosarcoma Progression

We calculated genome instability scores using

the method of Carter et al. (2006), which com-

pares levels of gene expression of a previously

defined genomic instability signature between

Figure 2. Venn diagram with numbers of affected genes in both
nonpaired and paired analyses, and in osteosarcoma biopsies versus
MSCs and versus osteoblasts. NP, nonpaired integrative analysis; P,
paired integrative analysis; OB, analysis of osteosarcoma biopsies ver-
sus osteoblasts; MSC, analysis of osteosarcoma samples versus mes-
enchymal stem cells. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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samples in a dataset, for all osteosarcoma biopsies

and different control tissues and cell lines (Fig.

4A). The osteosarcoma biopsies showed highly

variable scores, whereas genomic instability scores

for the controls, normal bone, MSCs, and osteo-

blasts were relatively low. High instability scores

Figure 4. Genomic instability scores and metastasis-free survival.
A: Genomic instability scores for high-grade osteosarcoma biopsies,
normal bone, osteosarcoma xenografts and cell lines, the HeLa cell
line, and mesenchymal stem cells (MSC) and osteoblasts (OB), as cal-
culated by the method of Carter et al., 2006. B: Metastasis-free sur-

vival Kaplan-Meier curves for four quartiles of genomic instability
scores. C: Metastasis-free survival Kaplan-Meier curves for the total
amount of genes with copy number gains and losses, using a cut-off
based on the median amount of genes per sample showing copy num-
ber aberration.

Figure 3. Dependence of gene copy number and gene expression
data. The heatmaps depict odds ratios for the numbers of genes per
sample which show gain and overexpression (overGain), gain and
underexpression (underGain), loss and overexpression (overLoss),
and loss and underexpression (underLoss). Chi-square tests, or, in
case a group contained <10 genes, Fisher’s exact tests, were per-

formed in order to evaluate whether the number of genes reported
from the integrative analysis was higher than expected by chance.
* Bonferroni-corrected P-values <0.05. A: osteosarcoma biopsies
versus MSCs; B: versus osteoblasts. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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were detected for osteosarcoma xenografts, cell

lines, and the HeLa cell line, in increasing order.

This signature predicted for metastasis-free sur-

vival in osteosarcoma samples as well (Fig. 4B),

with high scores correlating with shorter metasta-

sis-free survival (Logrank test for trend P ¼
0.0112). As expected, the total number of genes

with copy number gains or losses, which is a direct

measure of genomic instability from the SNP data,

was predictive for progression as well (Logrank

test P ¼ 0.018, Fig. 4C).

Candidate Osteosarcoma Driver Genes

The 31 genes returned by the paired integra-

tive analysis on clinical samples that also were

differentially expressed in osteosarcoma cell lines

are shown in Table 2, together with their chro-

mosomal locations, aberration frequencies, and

log fold changes. A total of 22/31 genes have

been described to play a role in cancer. Interest-

ingly, one third of these 22 genes have a role in

cell cycle regulation, matching the importance of

cell cycle and replication in osteosarcomagenesis

as was found both using the genomic instability

scores of the expression data and the overall chro-

mosomal instability as detected in the copy num-

ber data (Fig. 4).

DISCUSSION

In this study, we report copy number and gene

expression alterations in high-grade osteosarcoma

prechemotherapy biopsies, and then integrate

these data in order to detect osteosarcoma driver

genes. Copy number analyses, which were

obtained with high-density SNP microarrays,

showed very high genomic instability in the os-

teosarcoma biopsies. The pattern of aberrations is

in line with previous studies using aCGH and

SNP arrays, which show recurrent gains in chro-

mosome arms 1p, 6p, and 8q, and losses in chro-

mosome 10. The previously reported recurrent

amplification on chromosome arm 17p (Squire

et al., 2003; Man et al., 2004; Atiye et al., 2005;

Yen et al., 2009) is not listed, because we used a

very strict cut-off for aberration frequency (35%).

Aberration frequencies of 17% (Man et al., 2004)

and 26% (Yen et al., 2009) were previously found

on chromosome arm 17p, and a distinct amplifica-

tion in 17p with an aberration frequency of 21%

can be seen in Figure 1. We chose such a high

cut-off for recurrent aberrations in order to enrich

for selected genetic events and exclude the

numerous haphazard alterations that can be

attributed to the high genomic instability of high-

grade osteosarcoma. In addition, we previously

determined that this cut-off, as compared with

cut-offs of 15% and 50%, showed the most con-

sistent results in subsequent network and path-

way analyses on osteosarcoma cell line SNP data

(data not shown). For genome-wide gene expres-

sion analyses, both MSCs and osteoblasts were

used as control cells, and we only considered

overlapping genes between both comparisons, in

order to make sure the affected genes were dif-

ferentially regulated in osteosarcoma when com-

pared with its putative progenitor cells. This

analysis identified a large number (n ¼ 1,639) of

TABLE 2. Candidate Osteosarcoma Driver Genes

Symbol Cytobanda CNAb
CNA

freq (%)c logFCd

CLCC1 1p13.3 Gain 41.4 1.24
MCM4 8q11.21 Gain 37.9 1.35
AKR1C3 10p15.1 Loss 37.9 �1.94
AKR1C4 10p15.1 Loss 37.9 �1.34
ARHGAP22 10q11.22 Loss 37.9 �0.45
PGBD3 10q11.23 Loss 41.4 �0.82
ARID5B 10q21.2 Loss 48.3 �2.33
REEP3 10q21.3 Loss 48.3 �0.51
HERC4 10q21.3 Loss 51.7 �1.31
PBLD 10q21.3 Loss 48.3 �0.29
RUFY2 10q21.3 Loss 48.3 �0.20
KIAA1279 10q22.1 Loss 43.1 �0.57
SRGN 10q22.1 Loss 43.1 �2.26
AIFM2 10q22.1 Loss 44.8 �0.52
CHST3 10q22.1 Loss 48.3 �1.17
FAS 10q23.31 Loss 44.8 �0.42
PCGF5 10q23.32 Loss 37.9 �0.34
PPP1R3C 10q23.32 Loss 37.9 �2.89
AVPI1 10q24.2 Loss 37.9 �2.35
BLOC1S2 10q24.31 Loss 37.9 �0.51
CASC2 10q26.11 Loss 44.8 �0.18
FAM45A 10q26.11 Loss 39.7 �0.78
ERCC6 13q11.23 Loss 41.4 �0.52
WASF3 13q12.13 Loss 44.8 �2.43
C13orf33 13q12.3 Loss 48.3 �2.26
LHFP 13q14.11 Loss 48.3 �1.89
WBP4 13q14.11 Loss 55.2 �0.93
TSC22D1 13q14.11 Loss 58.6 �1.39
RCBTB1 13q14.2 Loss 58.6 �0.25
LATS2 13q21.11 Loss 44.8 �0.96
DCUN1D3 16p12.3 Loss 37.9 �1.39

All frequencies and fold changes are mean values of both integrative

analyses—osteosarcoma biopsies versus MSCs and osteosarcoma

biopsies versus osteoblasts. For genes for which more than one

probe was present on the array, the probe with the highest fold

change was used.
aUCSC cytogenetic band.
bCopy number aberration.
cCopy number aberration frequency (n ¼ 29).
dlog fold change in biopsies (negative means downregulation, positive

means upregulation).
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probes encoding for differentially expressed

genes. Many of these genes encode tissue type-

specific proteins, as is shown in the GO term

enrichment analysis, and appear as upregulated in

osteosarcoma biopsies because the in vitro grown

control cells, MSCs and osteoblasts, lack sur-

rounding stroma and are nurtured under other

conditions. Antigen processing and presentation

as well as angiogenesis pathways were expected

to be upregulated, as macrophages and other

infiltrating cells are present in osteosarcoma tis-

sue (Buddingh et al., 2011), and as angiogenesis

plays a role in osteosarcoma progression (Lee

et al., 1999). Nevertheless, most stroma-derived

gene expression is filtered out by integration with

copy number data, as this expression is not a

result of underlying copy number changes. In

addition to stroma-related gene sets, GO term

analysis showed enrichment in apoptosis and sig-

nal transduction genes, which are probably

altered in the osteosarcoma tumor cells and not

in the stroma. Because genes with concordant

changes in copy number and gene expression are

likely to be enriched in drivers of tumorigenesis,

we performed integrative analyses on both types

of data.

We found a remarkable increase in significant

differential genes in paired compared with non-

paired analysis, i.e., 101 versus 45. In general,

paired integrative analysis was advantageous over

nonpaired integrative analysis, identifying roughly

twice as many genes, also when different aberra-

tion frequency cut-offs or less stringent cut-offs

for significance were used in the nonpaired analy-

sis. Nonpaired analysis as performed in Nexus

software compares the number of differentially

expressed genes in a region of copy number aber-

ration with the expected number of differentially

expressed genes, which is based on the total

number of differentially expressed genes over the

whole genome. This method may be too rigorous,

because an altered copy number region may

encompass tissue-specific genes, which may not

be expressed in the particular tumor tissue.

These genes then have altered copy number, but

no difference in expression. If an altered copy

number region contains a relatively large number

of such genes plus only a few candidate drivers,

the entire region will be removed from the out-

put of the analysis, which increases the amount

of false negatives. Moreover, in the cancer gene

expression profile, a large number of genes down-

stream of drivers, i.e., directly or indirectly regu-

lated by drivers, or present in feedback loops will

be differentially expressed. This increases the

total number of differentially expressed genes,

which again lowers the chance that a specific

altered region is returned from the nonpaired

integrative analysis as significantly affected. Fur-

thermore, a single differentially expressed gene

in a certain region of copy number alteration may

still exert its driving function, and this driving

function usually does not depend on the propor-

tion of differentially expressed genes in the same

region. Because of this, and because our method

of paired integrative analysis is gene-based and

not region-based, we did not perform a correction

based on the total number of differentially

expressed genes when compared with the

affected copy number regions in the paired analy-

sis in R, and this may be an additional reason

why more genes are returned from the paired

analysis. However, in all samples, except for one

(L3438), the number of genes showing both copy

number alteration and differential expression was

higher than expected when compared with the

numbers of copy number alterations and differen-

tially expressed genes over the whole genome.

This was significant for the vast number of sam-

ples (28/29, 23/29, 27/29, and 23/29, for combina-

tions gain and overexpression, loss and

underexpression in biopsies versus MSCs, and

gain and overexpression, loss and underexpres-

sion in biopsies versus osteoblasts, respectively,

as shown in Fig. 3).

Genomic instability scores showed that the

instability in osteosarcoma tissues ranges from a

level comparable to that of the controls, to the

high instability levels of repeatedly passaged

tumors in xenografts and osteosarcoma cell lines.

We demonstrated both on copy number data, as

well as by applying a genomic instability gene

signature to genome-wide gene expression data,

that high genomic instability in osteosarcoma is

correlated with poor metastasis-free survival. This

suggests that genes playing a role in genomic

instability may be potent drivers of osteosarcoma

progression, as has been reported for various

other tumor types (Carter et al., 2006). Paired

integrative analysis confirmed this result, as one

third of the genes with a possible role in tumori-

genesis had a function connected to the cell

cycle. Of these genes, MCM4 showed gain and

overexpression and was only detected by the

paired integrative analysis. MCM4 is part of the

minichromosome maintenance complex, which

functions as a replication helicase, with a role in

maintaining genomic stability (Aguilera and
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Gomez-Gonzalez, 2008). This gene has been

reported overexpressed in various tumor types

(Freeman et al., 1999; Alison et al., 2002; Majid

et al., 2010). Genes that were detected in both

nonpaired and paired analyses were all deleted

and underexpressed. AVPI1, or arginine vasopres-

sin-induced 1, may be involved in cell cycling

(UniProt Consortium, 2011). ERCC6 is involved

in transcription-coupled nucleotide excision

repair, which is a critical survival pathway pro-

tecting against cancer (Fousteri and Mullenders,

2008). RCBTB1, a candidate tumor suppressor,

was recently shown to have growth inhibitory ac-

tivity in osteosarcoma cells by regulating path-

ways of DNA damage/repair and apoptosis (Zhou

and Munger, 2010). LATS2, or large tumor sup-

pressor homolog 2, plays a critical role in centro-

some duplication, maintenance of mitotic fidelity,

and genomic instability (Visser and Yang, 2010).

Positive feedback between the p53 and Lats2 tu-

mor suppressors prevents tetraploidization (Aylon

et al., 2006), which could be an initiating step in

osteosarcomagenesis, leading to genomic instabil-

ity (Ganem and Pellman, 2007a; Ganem et al.,

2007b). Also, a role of Lats2 in quenching of the

increased genomic instability of H-Ras-induced

transformation has been identified (Aylon et al.,

2009). DCUN1D3 encodes for a UVC-responsive

protein involved in cell cycle progression and cell

growth (Ma et al., 2008). Additional candidate

genes with no direct role in cell cycle regulation

include for example genes with a role in apopto-

sis (AIFM2, BLOC1S2, FAS) and metabolism

(AKR1C3 and -4). Some previously reported

genes with a driver role in osteosarcoma were not

identified, mainly because our high cut-off for

recurrence. For example, CDKN2A, MDM2, and

E2F2 had recurrence frequencies of 28%, 17%,

and 34%, respectively (in the dataset of 29 sam-

ples). CDKN2A and MDM2 were not significantly

differentially expressed, but E2F2 was consis-

tently significantly overexpressed with log fold

changes >1.50 in all analyses (biopsies and cell

lines as compared with different controls). TP53
and RB1 aberrations were present in >35% of all

samples (38% and 69%, respectively). TP53 was

significantly downregulated in biopsies as com-

pared with both controls, but not in the osteosar-

coma cell line dataset. RB1 showed significant

downregulation when compared with MSCs, but

not with osteoblasts, indicating a difference

between these controls in RB1 signaling. We set

our cut-off for recurrence to 35% and only

selected genes present both in osteosarcoma

biopsies as well as in cell lines as compared with

two different control sets, in order to select for

the most important osteosarcoma drivers. Using

this method, we were able to detect previously

unreported driver genes.

In summary, we have shown that an individual

gene-based paired integrative analysis of copy

number and gene expression data performs better

than a region-based nonpaired analysis. Several

osteosarcoma candidate driver genes, especially

genes playing a role in cell cycle progression,

have been identified. Additional research, particu-

larly functional studies, should reveal whether

these genes are early or late drivers in

osteosarcomagenesis.
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